From Griffiths: $1.4,1.7,1.20,1.29,1.32,1.38,1.42,1.44,1.47$

1. Prove that $(\mathbf{A} \times \mathbf{B}) \cdot(\mathbf{C} \times \mathbf{D})=(\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D})-(\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C})$
2. Problem 1.12 with new function: $h(x, y)=15\left(4 x^{2}-4 x y+3 y^{2}+16 x-29 y-11\right)$
3. Let $\mathbf{r}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$ and $r=|\mathbf{r}|$. Prove $\mathbf{A} \cdot \nabla\left(\frac{1}{r}\right)=-\frac{\mathbf{A} \cdot \mathbf{r}}{r^{3}}$
4. (a) Sketch a picture of the vector field $\mathbf{F}(\mathbf{r})=\mathbf{r}$.
(b) Calculate directly the flux of $\mathbf{F}(\mathbf{r})$ outward through the surface of the unit cube defined by $0 \leq x, y, z \leq 1$.
(c) Calculate the flux using Gauss's theorem.
