

About the Celestial Objects

Listed on this page are several of the brighter, more interesting celestial objects visible in the evening sky this month (refer to the monthly sky map). The objects are grouped into three categories. Those that can be easily seen with the naked eye (that is, without optical aid), those easily seen with binoculars, and those requiring a telescope to be appreciated. Note, all of the objects (except single stars) will appear more impressive when viewed through a telescope or very large binoculars. They are grouped in this way to highlight objects that can be seen using the optical equipment that may be available to the star gazer.

Tips for Observing the Night Sky

When observing the night sky, and in particular deep-sky objects such as star clusters, nebulae, and galaxies, it's always best to observe from a dark location. Avoid direct light from street lights and other sources. If possible observe from a dark location away from the light pollution that surrounds many of today's large cities.

You will see more stars after your eyes adapt to the darkness—usually about 10 to 20 minutes after you go outside. Also, if you need to use a torch to view the sky map, cover the light bulb with red cellophane. This will preserve your dark vision.

Finally, even though the Moon is one of the most stunning objects to view through a telescope, its light is so bright that it brightens the sky and makes many of the fainter objects very difficult to see. So try to observe the evening sky on moonless nights around either New Moon or Last Quarter.

Astronomical Glossary

Conjunction – An alignment of two celestial bodies such that they present the least angular separation as viewed from Earth.

Constellation – A defined area of the sky containing a star pattern.

Diffuse Nebula – A cloud of gas illuminated by nearby stars.

Double Star – Two stars that appear close to each other in the sky; either linked by gravity so that they orbit each other (binary star) or lying at different distances from Earth (optical double). Apparent separation of stars is given in seconds of arc (").

Ecliptic – The path of the Sun's center on the celestial sphere as seen from Earth.

Elongation – The angular separation of two celestial bodies. For Mercury and Venus the greatest elongation occurs when they are at their most angular distance from the Sun as viewed from Earth.

Galaxy – A mass of up to several billion stars held together by gravity.

Globular Star Cluster – A ball-shaped group of several thousand old stars.

Light Year (ly) – The distance a beam of light travels at 300,000 km/sec in one year.

Magnitude – The brightness of a celestial object as it appears in the sky.

Open Star Cluster – A group of tens or hundreds of relatively young stars.

Opposition – When a celestial body is opposite the Sun in the sky.

Planetary Nebula – The remnants of a shell of gas blown off by a star.

Universal Time (UT) - A time system used by astronomers. USA Eastern Standard Time (for example, New York) is 5 hours behind UT.

Variable Star - A star that changes brightness over a period of time.

NORTHERN HEMISPHERE DECEMBER 2006

OBJE(

LESTIAL

Easily Seen with the Naked Eye

•		
Altair	Aql •	Brightest star in Aquila. Name means "the flying eagle". Dist=16.8 ly.
Capella	Aur ●	The 6th brightest star. Appears yellowish in color. Spectroscopic binary. Dist=42 ly.
δ Cephei	Cep ●	Cepheid prototype. Mag varies between 3.5 & 4.4 over 5.366 days. Mag 6 companion.
Deneb	Cyg •	Brightest star in Cygnus. One of the greatest known supergiants. Dist=3,000 ly.
Castor	Gem •	Multiple star system with 6 components. 3 stars visible in telescope. Dist=52 ly.
Pollux	Gem ●	With Castor, the twin sons of Leda in classical mythology. Dist=34 ly.
Vega	Lyr ●	The 5th brightest star in the sky. A blue-white star. Dist=25.3 ly.
Rigel	0ri •	The brightest star in Orion. Blue supergiant star with mag 7 companion. Dist=770 ly.
Betelgeuse	0ri •	One of the largest red supergiant stars known. Diameter=300 times that of Sun. Dist=430 ly.
Algol	Per ●	Famous eclipsing binary star. Magnitude varies between 2.1 & 3.4 over 2.867 days.
Fomalhaut	PsA ●	Brightest star in Piscis Austrinus. In Arabic the "fish's mouth". Dist=25 ly.
Pleiades	Tau o	The Seven Sisters. Spectacular cluster. Many more stars visible in binoculars. Dist=380 ly.
Hyades	Tau o	Large V-shaped star cluster. Binoculars reveal many more stars. Dist=151 ly.
Aldebaran	Tau •	Brightest star in Taurus. It is not associated with the Hyades star cluster. Dist=65 ly.
Polaris	UMi •	The North Pole Star. A telescope reveals an unrelated mag 8 companion star.

Facily Seen with Rinoculars

Easily	Seen	W	ith binoculars
M31	And	0	The Andromeda Galaxy. Most distant object visible to naked eye. Dist=2.93 million ly.
M2	Aqr	0	Resembles a fuzzy star in binoculars.
η Aquilae	Aql	•	Bright Cepheid variable. Mag varies between 3.6 & 4.5 over 7.166 days. Dist=1,200 ly.
M38	Aur	0	Stars appear arranged in "pi" or cross shape. Dist=4,300 ly.
M36	Aur	0	About half size of M38. Located in rich Milky Way star field. Dist=4,100 ly.
M37	Aur	0	Very fine star cluster. Discovered by Messier in 1764. Dist=4,400 ly.
μ Cephei	Сер	•	Herschel's Garnet Star. One of the reddest stars. Mag 3.4 to 5.1 over 730 days.
Mira	Cet	•	Famous long period variable star. Mag varies between 3.0 & 10.1 over 332 days.
χ Cygni	Cyg	•	Long period pulsating red giant. Magnitude varies between 3.3 & 14.2 over 407 days.
M39	Cyg	0	May be visible to the naked eye under good conditions. Dist=900 ly.
ν Draconis	Dra	•	Wide pair of white stars. One of the finest binocular pairs in the sky. Dist=100 ly.
M35	Gem	0	Fine open cluster located near foot of the twin Castor. Dist=2,800 ly.
M92	Her	0	Fainter and smaller than M13. Use a telescope to resolve its stars.
ε Lyrae	Lyr	•	Famous Double Double. Binoculars show a double star. High power reveals each a double.
R Lyrae	Lyr	•	Semi-regular variable. Magnitude varies between 3.9 & 5.0 over 46.0 days.
Cr 69	0ri	0	Lambda Orionis Cluster. Dist=1,630 ly.
M42	0ri		The Great Orion Nebula. Spectacular bright nebula. Best with telescope. Dist=1,500 light years
M15	Peg	0	Only globular known to contain a planetary nebula (Mag 14, d=1"). Dist=30,000 ly.
Double Clus	ter Per	0	Double Cluster in Perseus. NGC 869 & 884. Excellent in binoculars. Dist=7,300 ly.
253	Scl	0	Fine, large, cigar-shaped galaxy. Requires dark sky. Member of Sculptor Group.
Cr 399	Vul	0	Coathanger asterism or "Brocchi's Cluster". Not a true star cluster. Dist=218 to 1,140 ly.

Telescopic Objects

γ Andromedae 7009 7293 γ Arietis η Cassiopeiae Albireo 61 Cygni γ Delphini θ Eridani β Lyrae M57 σ Orionis M1 M33 M81 M82 M27	And Aqr Aqr Ari Cas Cyg Del Eri Lyr Cyr Ori Tau Tri UMa UMa Vul	Attractive double star. Bright orange star with mag 5 blue companion. Sep=9.8". Saturn Nebula. Requires 8-inch telescope to see Saturn-like appendages. Helix Nebula. Spans nearly 1/4 deg. Requires dark sky. Dist=300 ly. Impressive looking double blue-white star. Visible in a small telescope. Sep=7.8". Yellow star mag 3.4 & orange star mag 7.5. Dist=19 ly. Orbit=480 years. Sep=12". Beautiful double star. Contrasting colours of orange and blue-green. Sep=34.4". Attractive double star. Mags 5.2 & 6.1 orange dwarfs. Dist=11.4 ly. Sep=28.4". Appear yellow & white. Mags 4.3 & 5.2. Dist=100 ly. Struve 2725 double in same field. Striking blue-white double star. Mags 3.2 & 4.3 Visible in a small telescope. Sep=8.2". Eclipsing binary. Mag varies between 3.3 & 4.3 over 12.940 days. Fainter mag 7.2 blue star. Ring Nebula. Magnificent object. Smoke-ring shape. Dist=4,100 ly. Superb multiple star. 2 mag 7 stars one side, mag 9 star on other. Struve 761 triple in field. Crab Nebula. Remnant from supernova which was visible in 1054. Dist=6,500 ly. Fine face-on spiral galaxy. Requires a large aperture telescope. Dist=2.3 million ly. Beautiful spiral galaxy visible with binoculars. Easy to see in a telescope. Close to M81 but much fainter and smaller. Dumbbell Nebula. Large, twin-lobed shape. Most spectacular planetary. Dist=975 ly.
		Copyright [©] 2000−2006 Kym Thalassoudis. All Rights Reserved
		· · · · · · · · · · · · · · · · · · ·