Mathematica

Mathematica is a general system for doing symbolic and numeric mathematics—including root finding, integration, differentiation, matrix algebra, plotting, fitting, Note: pay close attention to capitalization as **Mathematica commands are case dependent!**

Starting Mathematica: On a UNIX workstation, open a terminal and at the tcsh (%) prompt type:

math	For those using the command-line form.
mathematica	For those using notebooks.

Alternatively, *Mathematica* can be started from the Mandrake yellow star "start" menu: star \rightarrow CSBSJU Menu \rightarrow Physics \rightarrow math (or mathematica).

Exiting Mathematica: At the *Mathematica* (In[n]:=) prompt type:

Note capitalization.
Control-D also quits.
Control-C aborts.

Input and Output:

With notebooks all input and output appears in a browser. You can print selected portions by selecting from a menu. If you run the command-line version, using an editor, cut and paste from an open file.

In[1]:= << <i>file.</i> m	Mathematica will execute all the commands in <i>file.m</i> (note: .m is the suggested extension).
<pre>In[2] := Import["file.dat", "Table"]</pre>	Mathematica will create a list with the data from the <i>file</i> (note: .dat is the suggested extension). Also see Export.
<pre>In[3] := ! csh command</pre>	Mathematica will execute the csh command (e.g., ls, nedit).
In[4]:= ?Fi*	\dots Help for terms starting Fi, e.g., Fit.
<pre>In[5] := Options[Plot]</pre>	List options for commands, e.g., AspectRatio -> Automatic.
Examples:	
In[1]:= Solve[x∧2 + b _⊔ x + c == 0, x]	Mathematica knows the quadratic equation. A space is here denoted " $_{\sqcup}$ " and means multiplication. You could just as well write " b *x", but " b x" is one variable's name, not the intended " $b \cdot x$ "
2	2
-b + Sqrt[b - 4 c] Out[1]= {{x ->}}, {x -:}	-b - Sqrt[b - 4 c]
2	2
In[2]:= $x \wedge 2 + b_{\sqcup}x + c /$. First[%]	Apply the first rule in the set.
2	2 2
b(-b + Sqrt[b - 4 c]) (-b + Sqrt[b - 4 c])	qrt[b - 4 c])

In *Mathematica*, % always stands for the last result. You can type %% to use the next-to-last result or %n to use the result Out[n].

In[4]:= Integrate[$x \land 2 \sqcup Exp[x]$,x]	$\dots \int x^2 e^x dx$	
Out[4]=	$\dots e^x(2-2x+x^2)$	
In[5]:= D[%,x]	\dots Take the derivative of the previous result.	
Out[5]=	\ldots Simplify to get x^2e^x	
<pre>In[6]:= N[Pi, 50]</pre>	$\dots 50$ accurate digits of π .	
<pre>In[7] := FindRoot[Tanh[y]==1/(2/y-1), {y,.9}]</pre>	Finds a solution near $y = .9$	
<pre>In[8]:= Series[Cos[x],{x,0,6}]</pre>	Taylor's expansion near $x = 0$ up to x^6	
$In[9] := f[x_] := Re[Exp[I_{\sqcup}x]]$	Define the function: $f(x) = \cos(x)$ the hard way	
In[10]:= m={{a,b},{c,d}}	Define matrix $m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$	
Mathematics Impous lots of matrix approximations including. Dat [m] Inverse [m] Figure 1005 [m]		

Mathematica knows lots of matrix operations including: Det[m], Inverse[m], Eigenvalues[m], Eigenvectors[m], Eigensystem[m], m.n, m+n, ...

Graphics:

 ${\it Mathematica}$ can produce both screen and hardcopy plots.

$In[1] := Plot[Sin[2_{\sqcup}Pi_{\sqcup}x], \{x, 0, 2\}]$	A graph of $\sin(2\pi x)$ appears on your screen.
<pre>In[2] := PSPrint[%]</pre>	\ldots Prints a copy on the Physics laser printer.
<pre>In[3]:= Export["file.eps",%%,"EPS"]</pre>	Saves a file of graphic.

You may want to try some fancy color graphics like:

Including Mathematica Packages:

For example, to load the **Graphics' Animation'** package, at the *Mathematica* prompt type:

<pre>In[1]:= Needs["Graphics`Animation`"]</pre>	\dots Note capitalization and odd quote: `	
<pre>In[2]:= <<graphics polyhedra.m<="" pre=""></graphics></pre>	Other ways of adding packages.	
<pre>In[3]:= <<graphics`shapes`< pre=""></graphics`shapes`<></pre>		
<pre>In[4]:= theta = .3; irat = .3; phidot = 1; psidot = (irat - 1) Cos[theta]</pre>		
<pre>In[5]:= ShowAnimation[Table[RotateShape[AffineShape[Polyhedron[Cube],{1,1,irat}],</pre>		

More Information:

For more information about Mathematica, please refer to

- The Mathematica Book, Fifth Edition, by Stephen Wolfram, ISBN: 1579550223
- Mathematica 4: Standard Add-on Packages
- /net/local/mathematica_5.0/Documentation/English