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Name: Dr. Tom Kirkman Office: PEngel 136/132 Phone: 363–3811
email: tkirkman@csbsju.edu Informal Office Hours: 7:30 a.m. – 5:30 p.m.

Texts:

• An Introduction to Error Analysis
by John R Taylor (University Science, 1997)

• http://www.physics.csbsju.edu/370/

http://www.physics.csbsju.edu/stats/

Grading:

Your grade will be determined by averaging five scores: 3 lab scores, electronics workshop
score and poster score. Lab grades are based on what is recorded in your lab notebook.
Please be complete and legible! You will probably need at least 2 of these notebooks (which
may be “used”) as I’ll be grading old labs while you’ll working on current labs. Assigned
work is generally due at the beginning of the following class period. In particular your
lab notebook must be turned in before the lab lecture for the following experiment. (If
your lab work is incomplete, you may request an improved grade for a completed report,
nevertheless turn in what you have!) All work contributing to your grade must be turned
in by: Wednesday 12 December.

Oral Lab Report:

One of your three lab reports must be presented as an individual, brief, oral presentation
to your lab instructor. Select one of the poster subtopics (there are usually two or three
subtopics per lab report, see page 141) associated with a lab. Assemble the required hard-
copy plots, figures, and data tables much as you would for a poster, but they need not
be ‘poster perfect’. (Poster text blocks like Abstract, Methods & Materials, etc. are not
part of this performance: your words with associated artifacts must convey what you did.)
Prepare a ∼5 minute talk summarizing what you did (what/how did you measure? what
were your results? what final conclusions did you draw from your data?. . . ). Prepare for a
few minutes of questions from your instructor. Schedule a time to make your presentation
(a solo performance with just you and your instructor). Tack your materials on an available
blackboard and make your ‘elevator pitch’ to your instructor. Your performance will be
graded on a four point scale: 4=A, 3=C, 2=F, 1=F. A 4 is ‘awesome’. . . you could teach
this material!; 3 means no mistakes were made; 2 and 1 denote various levels of failure:
from simply incomplete to mis-reporting facts. Achieving awesome results on your first try
is rare; you have up to three repeats (generally on different days) to improve your grade.
There is no reason to turn in you hardcopy lab notebook for this lab report: your oral
presentation grade is your grade for the lab. Commonly lab partners will select different
lab subtopics of a particular lab and work together to hone what are in the end individual
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separate performances on related but different subtopics. However, there is no requirement
for you to work together. Students generally hope that their oral report choice will also be
their end-of-year poster topic, but poster topics will be distributed more or less uniformly
across the labs, so if the entire class procrastinates their oral report to the final lab, only a
lucky few will get matching poster topics. The lesson is don’t procrastinate; do your oral
report on an early lab!

Questions:

There is no such thing as a dumb question. Questions asked during lecture or lab do not
“interrupt”, rather they indicate your interests or misunderstandings. The aim of lab is to
do things you’ve never done before; it’s no surprise if you’ve got questions.

Remember: you are almost never alone in your interests, your misunderstandings, or your
problems. Please help your classmates and yourself by asking any question vaguely related
to physics lab. If you don’t want to ask your question during class, that’s fine too: I can
be found almost any time on the 100-level floor of Engel Science Center.

Times/Locations:

Half of this course will be self-scheduled. I hope many of you will still choose to do that work
in the scheduled slot, because you can be then sure to find me (i.e., help) at those times
and it will help you avoid the crime of procrastination. However, because of limited lab
equipment, in fact you cannot all perform the data collection simultaneously. Of course, data
analysis (which usually takes much longer than data collection) can be done simultaneously.
Four weeks are scheduled for each lab! Much of the actual data collection and analysis will
take place in the suite of labs adjacent to my office. The first class meeting will be in the
electronics lab: PE116; with luck you’ll also be taking data at the observatory.

Half of this course will meet at the scheduled time: lab lectures, workshops and the poster
sessions. The scheduled room (the astronomy lab room PEngel 319) is used only for lab
lectures. If you cannot attend at those times, the responsibility of mastering the material
falls on you. (An alternative class time—agreed to by all—would also be fine.) Note that
lab lectures typically run a bit more than an hour, which leaves plenty of time to start the
lab immediately following the lab lecture.

“Do I have to do my lab work during the scheduled lab period?”

The answer is “No, but be forewarned:” two years ago about 10% of the students did not
complete this course because they did not turn in the required reports at the required time.
If you do not procrastinate and actually put in the scheduled four solid hours1 of lab work
per week, I’ll work with you to make sure you complete labs on time. Again: the lab is
scheduled for 12:45 p.m. to 4:45 p.m. once per week, if you fiddle around in lab and leave
at 3:00, you are doing half the required work and 50%=F.

1i.e., hours when I’m immediately available to answer to your questions and not counting time spent on
your cell phone, web browsing, waiting for your lab partner, etc.. . .
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Lab Notebook:

Your lab notebook is the primary, graded work-product for this course. It should represent
a detailed record of what you have done in the laboratory—complete enough so that you
could look back after a year or two and reconstruct your work just using your notebook and
this manual.

Your notebook should include your preparation for lab, sketches and diagrams to explain the
experiment, data collected, comments on difficulties, self-documented spreadsheets, sample
calculations, data analysis, fit reports, final graphs, final results, answers to questions asked
in the lab manual, and a critique of the lab. (There is no need to repeat methods or theory
found in our lab manual.) A list of suggested sections can be found in the 191 lab manual.

DO NOT collect data on scratch paper and then transfer to your notebook. Your notebook
is to be a running (dated!) record of what you have done, not a formal (all errors eliminated)
report. There will be no formal lab reports in this course. Do not delete, erase, or tear out
sections of your notebook that you want to change. Instead, indicate in the notebook what
you want to change and why (such information can be valuable later on). Then lightly draw
a line through the unwanted section and proceed with the new work.

Be Prepared!

In this “Advanced Lab” you will typically be combining some fairly advanced physics con-
cepts with equally advanced instruments. The 10 minute pre-lab talk from 191/200 is now
stretched into an hour “lab lecture”; in an eight hour “workshop” you will demonstrate
your ability to use the electrical instrumentation you spent a whole semester developing in
Physics 200. It will be quite easy to be overwhelmed by the theory and the instrumenta-
tion. Your main defense against this tsunami of information is to read and understand the
material before the lecture/lab. I know that this is difficult: technical readings never seems
to make sense the first time through. But frankly, one of the prime skills you should be
developing (i.e., the prime skill employers seek) is the ability to read, understand, and act
on technical documents. In 191 you were told to: Read aggressively! Read with a pencil in
hand so you can jot down questions, complete missing steps of algebra, and argue with the
author. (In this case you can actually take your complaints, comments, and arguments to
the author, rather than imagining how the author would respond.) A significant problem is
that readings (in contrast to lectures) generally aim at getting the details right. But details
obscure the big picture and misdirect attention. This leads to the suggestion of “skimming”
the material. . . which is OK as long as that’s just the first step to understanding. I usually
instead start by reading for detail, but bit-by-bit my confusion grows and I switch to skim-
ming. But then I repeat the process from the start. After several repeats, I usually reach a
point where I’m not making progress, and I find I must do something more active like: talk
to somebody about the material, or try to solve a problem—perhaps one of my own design.
The aim is to try to find out why the author thinks his points are the important ones.
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Posters: A stitch in time saves nine.

Presentation of a lab project as a poster is the final component of this course. While I
know procrastination always seems like the easiest course, in fact, putting together a poster
months after you’ve completed the lab is time consuming. The easy course is actually to
start your poster (particularly the figures) soon after you’ve completed the lab. While you
can delay final construction, preparation of poster-quality figures immediately following the
lab will save you a lot of time just when you most need it (at the end of the semester). See
page 141 for basic poster information and that section’s references for much more detailed
information. Poster topics will be assigned on a first come first served basis, so there is no
reason to delay selecting your poster topic.

Schedule:

Class Date Topics

1 T Aug 27 Electrical Measurements Laba

2 T Sep 3 b

3 T Sep 10 Lab Lecture: Bubble Chamber & Photometryc

4 T Sep 17
5 T Sep 24
6 T Oct 8
7 T Oct 15 Lab Lecture: Thermionic Emission, Fortran, GPIB
8 T Oct 22
9 T Oct 29
10 T Nov 5
11 T Nov 12 Lab Lecture: Langmuir Probe?d

12 T Nov 19
13 T Nov 26
14 T Dec 3
15 T Dec 10 Poster Conference

aRead “Electrical Measurement Review” before the lab! Meet in room PE116.
bRead Chapter 0
cASAP schedule a few nights for data collection at observatory
dOnly if observatory observations were not possible.
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0: Systematic Error

Physical scientists. . . know that measurements are never perfect and thus want
to know how true a given measurement is. This is a good practice, for it keeps
everyone honest and prevents research reports from degenerating into fish stories.

Robert Laughlin (1998 Physics Nobel Laureate) p.10 A Different Universe

A hypothesis or theory is clear, decisive, and positive, but it is believed by no
one but the man who created it. Experimental findings, on the other hand, are
messy, inexact things, which are believed by everyone except the man who did
the work.

Harlow Shapley, Through Rugged Ways to the Stars. 1969

Perhaps the dullest possible presentation of progress1 in physics is displayed in Figure 1: the
march of improved experimental precision with time. The expected behavior is displayed in
Figure 1d: improved apparatus and better statistics (more measurements to average) results
in steady uncertainty reduction with apparent convergence to a value consistent with all
earlier measurements. However frequently (Figs. 1a–1c) the behavior shows a ‘final’ value
inconsistent with the early measurements. Setting aside the possibility of experimental
blunders, systematic error is almost certainly behind this ‘odd’ behavior. Uncertainties that
produce different results on repeated measurement (sometimes called random errors) are
easy to detect (just repeat the measurement) and can perhaps be eliminated (the standard
deviation of the mean ∝ 1/N1/2 which as N → ∞, gets arbitrarily small). But systematic
errors do not telegraph their existence by producing varying results. Without any tell-
tale signs, systematic errors can go undetected, much to the future embarrassment of the
experimenter. This semester you will be completing labs which display many of the problems
of non-random errors.

Experiment: Measuring Resistance I

Consider the case of the digital multimeter (DMM). Typically repeated measurement with
a DMM produces exactly the same value—its random error is quite small. Of course,
the absence of random error does not imply a perfect measurement; Calibration errors are

1Great advancements is physics (Newton, Maxwell, Einstein) were not much influenced by the quest for
more sigfigs. Nevertheless, the ability to precisely control experiments is a measure of science’s reach and
history clearly shows that discrepant experiments are a goad for improved theory.

9
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(a) Neutron lifetime vs. Publication Date (b) B+ lifetime vs. Publication Date

(c) ω width vs. Publication Date (d) W mass vs. Publication Date

Figure 1: Measured values of particle properties ‘improve’ with time, but ‘progress’ is often
irregular. The error bars (δx) are intended to be ‘±1σ’: the actual value should be in the
range x± δx 68.3% of the time (if the distribution were normal) and in the range x± 2δx
95.4% of the time. These figures are from the Particle Data Group, pdg.lbl.gov.
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Figure 2: A pair DM-441B DMMs were used to measure the voltage across (V ) and the
current through (I) a resistor stated to be “4.99 kΩ”

expected and reported in the device’s specifications. Using a pair of DM-441B multimeters,
I measured the current through and the voltage across a resistor. (The circuit and results
are displayed in Figure 2.) Fitting the expected linear relationship (I = V/R), Linfit
reported R = 4.9696± .0016 kΩ (i.e., a relative error of 0.03%) with a reduced χ2 of .11. (A
graphical display showing all the following resistance measurements appears in Figure 3. It
looks quite similar to the results reported in Figs. 1.)

This result is wrong and/or misleading. The small reduced χ2 correctly flags the fact that
the observed deviation of the data from the fit is much less than what should have resulted
from the supplied uncertainties in V and I (which were calculated from the manufacturer’s
specifications). Apparently the deviation between the actual voltage and the measured
voltage does not fluctuate irregularly, rather there is a high degree of consistency of the
form:

Vactual = a+ bVmeasured (1)

where a is small and b ≈ 1. This is exactly the sort of behavior expected with calibration
errors. Using the manufacturer’s specifications (essentially δV/V ≈ .001 and δI/I ≈ .005)
we would expect any resistance calculated by V/I to have a relative error of

√
.12 + .52 =

.51% (i.e., an absolute error of ±.025 kΩ for this resistor) whereas Linfit reported an error
17 times smaller. (If the errors were unbiased and random, Linfit could properly report
some error reduction due to “averaging:” using all N = 12 data points—perhaps an error
reduction by a factor of N1/2 ≈ 3.5—but not by a factor of 17.) Linfit has ignored the
systematic error that was entered and is basing its error estimate just on the deviation
between data and fit. (Do notice that Linfit warned of this problem when it noted the small
reduced χ2.)
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Figure 3: Three different experiments are used to determine resistance: (A) a pair of DM-
441B: V/I, (B) a pair of Keithley 6-digit DMM: V/I, (C) a Keithley 6-digit DMM direct
R. The left plot displays the results with error bars determined from Linfit; the right plot
displays errors calculated using each device’s specifications. Note that according to Linfit
errors the measurements are inconsistent whereas they are consistent using the error directly
calculated using each device’s specifications.

When the experiment was repeated with 6-digit meters, the result was R = 4.9828 ±
.0001 kΩ with a reduced χ2 of .03. (So calibration errors were again a problem and the two
measurements of R are inconsistent.) Direct application of the manufacturer’s specifications
to a V/I calculation produced a 30× larger error: ±.003 kΩ

A direct measurement of R with a third 6-digit DMM, resulted in R = 4.9845 ± .0006 kΩ.

Notice that if Linfit errors are reported as accurate I will be embarrassed by future measure-
ments which will point out the inconsistency. On the other hand direct use of calibration
errors produces no inconsistency. (The graphical display in Figure 3 of these numerical
results is clearly the best way to appreciate the problem.) How can we know in advance
which errors to report? Reduced χ2 much greater or much less than one is always a signal
that there is a problem with the fit (and particularly with any reported error).

Lesson: Fitting programs are designed with random error in mind and hence do not prop-
erly include systematic errors. When systematic errors dominate random errors, computer
reported ‘errors’ are some sort of nonsense.

Comment: If a high precision resistance measurement is required there is no substitute
for making sure that when the DMM reads 1.00000 V the actual voltage is also 1.00000 V.
Calibration services exist to periodically (typically annually) check that the meters read
true. (However, our SJU DMMs are not calibrated periodically.)

Warning: Statistics seems to suggest that arbitrarily small uncertainties can be obtained
simply by taking more data. (Parameter uncertainties, like the standard deviation of the
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mean, will approach zero in proportion to the inverse square-root of the number of data
points.) This promise of asymptotic perfection is based on the assumption that errors are
exactly unbiased — so that with a large number of data points the errors will cancel and the
underlying actual mean behavior will be revealed. However, in real experiments the errors
are almost never unbiased; systematic errors cannot generally be removed by averaging.
Care is always required in interpreting computer reported uncertainties. You must always
use your judgment to decide if your equipment really has the ability to determine the
parameters to accuracy suggested by computer analysis. You should particularly be on
your guard when large datasets have resulted in errors much smaller than those reported
for the individual data points.

Measure Twice: Systematic Error’s Bane

In the thermionic emission lab you will measure how various properties of a hot tungsten
wire are affected by its temperature. The presence of some problem with the thermionic lab
measurements is revealed by the odd reduced χ2 in fits, but how can we determine which
measurements are the source of the problem? Systematic errors are most commonly found
by measuring the same quantity using two different methods and not getting the same result.
(And this will be the approach in this course: you will often be asked to measure a quantity
(e.g., path length, temperature, plasma number density) using two different methods, and
find different answers.) Under these circumstances we can use the deviation between the
two different measurements as an estimate for the systematic error. (Of course, the error
could also be even larger than this estimate!)

Problem of Definition

Often experiments require judgment2. The required judgments often seem insignificant: Is
this the peak of the resonance curve? Is A now lined up with B? Is the image now best in
focus? Is this the start and end of one fringe? While it may seem that anyone would make
the same judgments, history has shown that often such judgments contain small observer
biases. “Problem of definition errors” are errors associated with such judgments.

Historical Aside: The “personal equation” and the standard deviation of the mean.

Historically the first attempts at precision measurement were in astrometry (accurate mea-
surement of positions in the sky) and geodesy (accurate measurement of positions on Earth).
In both cases the simplest possible measurement was required: lining up an object of interest
with a crosshair and recording the data point. By repeatedly making these measurements,
the mean position was very accurately determined. (The standard deviation of the mean
is the standard deviation of the measurements divided by the square root of the number
of measurements. So averaging 100 measurements allowed the error to be reduced by a
factor of 10.) It was slowly (and painfully: people were fired for being ‘poor’ observers)
determined that even as simple an observation as lining up A and B was seen differently by
different people. Astronomers call this the “personal equation”: an extra adjustment to be

2In his book The Signal and The Noise (2012) the economist/blogger Nate Silver writes: “Wherever there
is human judgment there is the potential for bias”.
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made to an observer’s measurements to be consistent with other observers’ measurements.
This small bias would never have been noticed without the error-reduction produced by
averaging. Do notice that in this case the mean value was not the ‘correct’ value: the per-
sonal equation was needed to remove unconscious biases. Any time you use the standard
deviation of the mean to substantially reduce error, you must be sure that the random
component you seek to remove is exactly unbiased, that is the mean answer is the correct
answer.

In the bubble chamber lab, you will make path-length measurements from which you will
determine a particle’s mass. Length measurements (like any measurement) are subject to
error, say 0.1 mm. A computer will actually calculate the distance, but you have to judge
(and mark) the beginning and end of the paths. The resulting error is a combination of
instrument errors and judgment errors (problem of definition errors). Both of these errors
have a random component and a systematic component (calibration errors for the machine,
unconscious bias in your judgments). A relatively unsophisticated statistical treatment of
these length measurements produces a rather large uncertainty in the average path length
(and hence in the particle’s mass calculated from this length). However, a more sophisticated
treatment of the same length data produces an incredibly small estimated length error
much less than 0.1 mm. Of course it’s the aim of fancy methods to give ‘more bang
for the buck’ (i.e., smaller errors for the same inputs), however no amount of statistical
manipulation can remove built in biases, which act just like systematic (non-fluctuating)
calibration errors. Personal choices about the exact location of path-beginning and path-end
will bias length measurements, so while random length errors can be reduced by averaging
(or fancy statistical methods), the silent systematic errors will remain.

Experiment: Measuring Resistance II

If the maximum applied voltage in the resistance experiment is increased from ±10 V to
±40 V a new problem arises. The reduced χ2 for a linear fit balloons by a factor of about 50.
The problem here is that our simple model for the resistor I = V/R (where R is a constant)
ignores the dependence of resistance on temperature. At the extremes of voltage (±40 V)
about 1

3 W of heat is being dumped into the resistor: it will not remain at room temperature.
If we modify the model of a resistor to include power’s influence on temperature and hence
on resistance, say:

I =
V

k1(1 + k2V 2)
(2)

(where fitting constant k1 represents the room temperature resistance and k2 is a factor
allowing the electrical power dissipated in the resistor to influence that resistance), we
return to the (too small) value of reduced χ2 seen with linear fits to lower voltage data.
However even with this fix it is found that the fit parameters depend on the order the data
is taken. Because of ‘thermal inertia’ the temperature (and hence the resistance) of the
resistor will lag the t → ∞ temperature: T will be a bit low if the resistor is heating up
during data collection or a bit high if the resistor is cooling down. The amount of this lag
will depend on the amount of time the resistor is allowed to equilibrate to a new applied
voltage. Dependence of data on history (order of data collection) is called hysteresis.

You might guess that the solution to this ‘problem’ is to always use the most accurate model
of the system under study. However it is known that that resistance of resistors depends on
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pressure, magnetic field, ambient radiation, and its history of exposure to these quantities.
Very commonly we simply don’t care about things at this level of detail and seek the fewest
possible parameters to ‘adequately’ describe the system. A resistor subjected to extremes of
voltage does not actually have a resistance. Nevertheless that single number does go a long
way in describing the resistor. With luck, the fit parameters of a too-simple model have some
resemblance to reality. In the case of our Ohm’s law resistance experiment, the resulting
value is something of an average of the high and low temperature resistances. However, it is
unlikely that the computer-reported error in a fit parameter has any significant connection
to reality (like the difference between the high and low temperature resistances) since the
error will depend on the number of data points used.

The quote often attributed3 to Einstein: “things should be made as simple as possible,
but not simpler” I hope makes clear that part of art of physics is to recognize the fruitful
simplifications.

Lesson: We are always fitting less-than-perfect theories to less-than-perfect data. The
meaning of of the resulting parameters (and certainly the error in those parameters) is
never immediately clear: judgment is almost always required.

The Spherical Cow

I conceive that the chief aim of the physicist in discussing a theoretical problem
is to obtain ‘insight’ — to see which of the numerous factors are particularly
concerned in any effect and how they work together to give it. For this purpose
a legitimate approximation is not just an unavoidable evil; it is a discernment
that certain factors — certain complications of the problem — do not contribute
appreciably to the result. We satisfy ourselves that they may be left aside; and
the mechanism stands out more clearly freed from these irrelevancies. This
discernment is only a continuation of a task begun by the physicist before the
mathematical premises of the problem could even be stated; for in any natural
problem the actual conditions are of extreme complexity and the first step is to
select those which have an essential influence on the result — in short, to get
hold of the right end of the stick.

A. S. Eddington, The Internal Constitution of the Stars, 1926, pp 101–2

As Eddington states above, the real world is filled with an infinity of details which a priori
might affect an experimental outcome (e.g., the phase of the Moon). If the infinity of details
are all equally important, science cannot proceed. Science’s hope is that a beginning may
be made by striping out as much of that detail as possible (‘simple as possible’). If the
resulting model behaves —at least a little bit— like the real world, we may have a hold on
the right end of the stick.

The short hand name for a too-simple model is a “spherical cow” (yes there is even a book
with that title: Clemens QH541.15.M34 1985). The name comes from a joke that every
physicist is required to learn:

3“The supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible
without having to surrender the adequate representation of a single datum of experience” p.9 On the Method

of Theoretical Physics is an actual Einstein quote, if not as pithy—or simple.
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Ever lower milk prices force a Wisconsin dairy farmer to try desperate—even
crazy—methods to improve milk production. At the end of his rope, he drives
to Madison to consult with the greatest seer available: a theoretical physicist.
The physicist listens to him, asks a few questions, and then says he’ll take the
assignment, and that it will take only a few hours to solve the problem. A
few weeks later, the physicist phones the farmer, and says “I’ve got the answer.
The solution turned out to be a bit more complicated than I thought and I’m
presenting it at this afternoon’s Theory Seminar”. At the seminar the farmer
finds a handful of people drinking tea and munching on cookies—none of whom
looks like a farmer. As the talk begins the physicist approaches the blackboard
and draws a big circle. “First, we assume a spherical cow...” (Yes that is the
punch line)

One hopes (as in the spherical cow story) that approximations are clearly reported in
derivations. Indeed, many of the ‘problems’ you’ll face this semester stem from using high
accuracy test equipment to test an approximate theory. (It may be helpful to recall the
191 lab on measuring the kinetic coefficient of friction in which you found that accurate
measurement invalidated F = µkN where µk was a constant. Nevertheless ‘coefficient of
friction’ is a useful approximation.)

For example, in the Langmuir’s probe lab we assume that the plasma is in thermal equi-
librium, i.e., that the electrons follow the Maxwell-Boltzmann speed distribution and make
a host of additional approximations that, when tested, turn out to be not exactly true. In
that lab, you will find an explicit discussion of the error (20% !) in the theoretical equation
Eq. 7.53.

Ji ≈
1

2
en∞

√

kTe
Mi

(3)

Again this ‘error’ is not a result of a measurement, but simply a report that if the theory
is done with slightly different simplifications, different equations result. Only rarely are
errors reported in theoretical results, but they almost always have them! (Use of flawed or
approximate parameters is actually quite common, particularly in engineering and process
control—where consistent conditions rather than fundamental parameters are the main
concern.)

What can be done when the model seems to produce a useful, but statistically invalid fit
to the data?

0. Use it! Perhaps the deviations are insignificant for the engineering problem at hand,
in which case you may not care to explore the reasons for the ‘small’ (compared to
what matters) deviations, and instead use the model as a ‘good enough’ approximation
to reality.

1. Find a model that works.4 This obvious solution is always the best solution, but
often (as in these labs) not a practical solution, given the constraints.

2. Monte Carlo simulation of the experiment. If you fully understand the processes
going on in the experiment, you can perhaps simulate the entire process on a computer:

4Design Report: National Accelerator Laboratory [a.k.a. Fermilab] (1968, p. 2-2): “That nature is more
complex than first expected is a challenge rather than a disappointment”.
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the computer simulates the experimental apparatus, producing simulated data sets
which can be analyzed using the flawed model. One can detect differences (biases
and/or random fluctuation) between the fit parameters and the ‘actual’ values (which
are known because they are set inside the computer program).

3. Repeat the experiment and report the fluctuation of the fit parameters.
In some sense the reporting of parameter errors is damage control: you can only be
labeled a fraud and a cheat if, when reproducing your work, folks find results outside
of the ballpark you specify. You can play it safe by redoing the experiment yourself
and finding the likely range (standard deviation) of variation in fit parameters. In
this case one wants to be careful to state that parameter values are being reported not
physical parameters (e.g., ‘indicated temperature’ rather than actual temperature).
Again, since systematic errors do not result in fluctuation, the likely deviation between
the physical parameters and the fit parameters is not known. This was the approach
used in the 191 µk experiment.

4. Use bootstrapping5 to simulate multiple actual experiments. Bootstrapping
‘resamples’ (i.e., takes subsets) from the one in-hand data set, and subjects these
subsets to the same fitting procedure. Variation in the fit parameters can then be
reported as bootstrap estimates of parameter variation. The program fit can boot-
strap. (Again: report that an unknown amount of systematic error is likely to be
present.)

5. Fudge the error.

In dire circumstances, you might try scaling all your x and y error bars by a
constant factor until the probability is acceptable (0.5, say), to get plausible
values for σA and σB .

Numerical Recipes by Press, et al., 3rd ed. p. 787

Adjust the size of your error bars so you get reduced χ2 = 1, and then calculate
errors as in the usual approach. Clearly this is the least legitimate procedure (but it
is what LINFIT does). One must warn readers of the dicey nature of the resulting
error estimates. The program fit can fudge.

Special Problem: Temperature

Measuring temperature is a particular problem. (This semester you’ll do two labs that
involve measuring temperatures above 1000 K in situations a bit removed from the experi-
menter.) You may remember from 211 that while temperature is a common part of human
experience, it has a strikingly abstruse definition:

1

kT
≡ ∂ ln Ω

∂E
(4)

While the usual properties of Newtonian physics (mass, position, velocity, etc.) exist at any
time, temperature is a property that exists contingent on a situation: ‘thermal equilibrium’.
And thermal equilibrium is an idealization only approximately achieved—never exactly

5wiki Bootstrapping (statistics)
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achieved—in real life. Furthermore in these experiments, thermal equilibrium is not even
closely approximated, so the resulting temperatures have somewhat restricted meanings.

In the photometry lab ‘the temperature of stars’ is measured. In fact stars do not have a
temperature and are not in thermal equilibrium. Nevertheless, astronomers find it useful to
define an ‘effective temperature’ which is really just a fit parameter that is adjusted for the
best match between the light produced by the star and the light predicted by the model.

Special Problem: Assuming Away Variation

In the 191 µk lab, you assumed the sliding motion was characterized by one value of µk,
whereas a little experimentation finds variation: some locations are slippery and and some
are sticky (handprints?). In the thermionic emission lab you will measure how various
properties of a hot wire depend on temperature, however the hot wire does not actually
have a temperature: near the supports the wire is cooled by those supports and hence is
at a lower temperature. Our spherical cow models have simplified away actual variation.
The hope is that the fit model will thread between the extremes and find something like
the typical value. Of course, real variations will result in deviations-from-fit which will be
detected if sufficiently accurate measurements are made.

Special Problem: Derive in Idealized Geometry, Measure in Real Geometry

Often results are derived in simplified geometry: perfect spheres, infinite cylinders, flat
planes, whereas measurements are made in this imperfect world. In these labs (and often in
real life) these complications are set aside; instead of waiting for perfect theory, experiment
can test if we have “the right end of the stick”. Thus a Spherical Cow is born. The theory
should of course be re-done using the actual geometry, but often such calculations are
extremely complex. Engineering can often proceed perfectly adequately with such a first
approximation (with due allowance for a safety factor) and, practically speaking, we simply
may not need accuracy beyond a certain number of sigfigs. Indeed it takes a special breed
of physicist to push for the next sigfig; such folks are often found in national standards labs
like nist.gov.

Special Problem: Transducer Calibration

High precision measurement is most commonly electrical in nature: voltmeters, frequency
counters, etc.. . . Transducers are devices that convert a quantity of interest (e.g., pressure,
temperature, light intensity) into an electrical quantity for precise measurement. The for-
mula that relates the measured electrical quantity back to the quantity-of-interest is called a
calibration. Commonly the uncertainty in calibration vastly exceeds the uncertainty in the
electrical measuring device. Thus the error in, say, pressure δP has nothing to do with the
error in, say, the voltmeter δV . This can come about for a variety of reasons. For example,
the calibration may assume that there is a simple single-variable relationship between P
and V (P = f(V )), whereas in fact there may be an uncontrolled second variable involved
(as in P = f(V,X)). Uncontrolled variations in X produce mis-calculated P . Commonly a
complex relationship between the quantities has been over-simplified by choice of a simple
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formula relating the quantities. In this case the error will be systematic as actual P will be
systematically above or below the value calculated from V using the formula.

The Fit Elephant

I remember a public lecture in the late 1970s by the theoretical astrophysicist Don Cox, in
which he said

Give me one free parameter and I’ll give you an elephant. Give me two and I’ll
make it wag its tail

Cox was certainly not the originator6 of this sort of statement, for example, Freeman Dyson
writes7 that in 1953 Enrico Fermi quoted Johnny von Neumann as saying:

with four parameters I can fit an elephant and with five I can make him wiggle
his trunk

The fit elephant is the opposite of the spherical cow: totally unconstrained parameters are
added willy-nilly to the model in order to chase the data. The parameter k2 in the hot
resistor equation (Eq. 2) is potentially such a dangerously free parameter: I will accept any
value the computer suggests if only it improves the fit. While I have provided a story which
suggests why such a term might be present, I have not actually checked that there is any
truth in the story (for example, by measuring the actual temperature of the resistor at high
voltage and by measuring the resistance of the resistor when placed in an oven). Skepticism
about such inventions is expressed as Occam’s razor8 and the law of parsimony.

Purpose:

In all your physics labs we have stressed the importance of ‘error analysis’. However, in
this course you will have little use for that form of error analysis (because it was based
on computer reports of random errors). Instead, my aim in this course is to introduce
you to the problems of non-random error. In the bubble chamber lab you will see how
increasingly sophisticated analysis can reveal systematic error not important or evident
in more elementary analysis. In the other labs you will see how systematic error can be
revealed by measuring the same quantity using different methods. In all of these labs you
will use too simple theory to extract characterizing parameters, which are not exactly the
same quantity as might occur in a perfect version of the problem.

6Brown & Sethna, Phys.Rev.E, 68 021904 (2003), reports attributions to C.F. Gauss, Niels Bohr, Lord
Kelvin, Enrico Fermi, and Richard Feynman; I would add Eugene Wigner. The first Google Books hit is in
1950.

7Nature 427, 297 (2004), Mayer, el al., Am. J. Phys. 78, 648 (2010), found the required 4+1 (complex)
parameters

8“entia non sunt multiplicanda praeter necessitatem”, roughly (Wiki) translated as “entities must not be
multiplied beyond necessity”.
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Comment:

The lesson: “measure twice using different methods” is often impractical in real life. The
real message is to be constantly aware that the numbers displayed on the meter may not
be the truth. Be vigilant; check calibrations and assumptions whenever you can.

“Many people do not appreciate that measurements which are both reproducible
and of low uncertainty can still be inaccurate.”

Sam Benz (NIST, 2013) on the development of a 1 part per billion voltage source.



1: Electrical Measurements Review

Pre-Lab: Read and understand this chapter before coming to lab!

Lab: See page 38. Work as individuals!
Lab in room PE116. Begin: ASAP; Due: 10 September.
Complete the following problems: 1a, 2a, 3–10, 12, 16–22
Record the results in your notebook.

Reference: Horowitz & Hill, The Art of Electronics
Chapter 1 & Appendix A
Diefenderfer & Holton, Principles of Electronic Instrumentation
Chapter 6
Paul Scherz, Practical Electronics for Inventors, 2nd edition

Purpose

This review aims to re-familiarize you with the electronic instrumentation you used in
Physics 200 lab: components like resistors and capacitors, measuring devices like digital
multimeters and oscilloscopes, and electrical sources like function generators and d.c. power
supplies. In addition the usual schematic symbols for these devices are presented.

Components

In Physics 200 you learned about three passive, linear components: resistors (R), capacitors
(a.k.a., condensers, C) and inductors (a.k.a., chokes or coils, L). These devices are called
passive because they require no outside power source to operate (and thus circuits involving
just these components cannot amplify: at best power in = power out). These devices are
called linear because the current through these devices is linearly proportional to the voltage
across them1:

I =
1

Z
V (1.1)

1Unless otherwise stated, you should always assume that “voltage” and “current” refer to the root-mean-
square (rms) value of that quantity. That is what meters always report. Of course, this equation would also
apply to peak or peak-to-peak values as long as they are consistently used.

21
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R

2πfC
XC = 

1

C L

XL = 2πfL

ground diode
anode

cathode

Figure 1.1: The schematic symbols for common components including resistors (R), capac-
itors (C), and inductors (L). For these three “linear” devices there is a linear relationship
between the current through the device (I) and the voltage across the device (V ). For
resistors, the resistance, R = V/I is constant. For capacitors and inductors the reactance
X = V/I depends on frequency (f) as shown above. The two symbols for ground (zero
volts) are, respectfully, earth and chassis ground.

The impedance Z (unit: Ω) determines the proportionality constant. Large impedances
(think MΩ) mean small currents (think µA) flow from moderate driving voltages. Small
impedances (think 1 Ω) mean large currents (1 A) flow from moderate driving voltages.
Impedance2 is an inclusive term: for resistors the impedance is called resistance; for in-
ductors and capacitors the impedance is called reactance. Inductors and capacitors are
useful only in circuits with changing voltages and currents. (Note: changing voltage and/or
current = alternating current = a.c.; unchanging current/voltage = direct current = d.c..)
The reactance (or impedance) of inductors and capacitors depends on the frequency f of
the current. A capacitor’s impedance is inversely proportional to frequency, so it impedes
low frequency signals and passes high frequency signals. An inductor’s impedance is pro-
portional to frequency, so it impedes high frequency currents but passes low frequency
currents. Recall that current and voltage do not rise and fall simultaneously in capacitors
and inductors as they do in resistors. In the inductors the voltage peaks before the current
peaks (voltage leads current, ELI). In capacitors the current peaks before the voltage peaks
(current leads voltage, ICE).

Diodes are non-linear passive devices. Positive voltages on one terminal (the anode) results
in large current flows; positive voltages on the other terminal (the cathode) results in
essentially no current flow. Thus the defining characteristic of diodes is easy current flow in
only one direction. The arrow on the schematic symbol for a diode shows the easy direction
for current flow. On a diode component a white line often marks which terminal allows
easy outward flow (i.e., the cathode).

Light Emitting Diodes (LED) are specialized diodes in which part of the electrical power
(I∆V ) is dissipated as light rather than heat. The color of the emitted light (from IR to
UV) depends on the material which, in turn, determines ∆V .

2Impedance is often distinguished as being a complex quantity (as in Z = a + bi, where i =
√
−1 and

a, b ∈ R). Resistors then have real impedances whereas Z is purely imaginary for inductors and capacitors.
This advanced approach is followed in Physics 338. In Physics 200 this reality was hidden behind ‘phasers’.
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Figure 1.2: The schematic symbols for common electric sources. Real sources can be mod-
eled as ideal sources with hidden resistors. Lab power supplies are fairly close to ideal
sources, if operated within specified limits. For example, the Lambda LL-901 specifications
report an internal resistance less than 4 mΩ.

Sources

D.C. Current and Voltage Sources

An ideal voltage source produces a constant voltage, independent of the current drawn
from the source. In a simple circuit consisting of a voltage source and a resistor, the power
dissipated in the resistor (which is the same as the power produced by the voltage source)
is V 2/R. Thus as R → 0 infinite power is required. I hope it comes as no surprise that
infinite power is not possible, so ideal voltage sources do not exist. Every real voltage
source has some sort of current limit built in. (Unfortunately it is not uncommon that the
current limiting feature is the destruction the device — beware!!!) Batteries can be thought
of as an ideal voltage source in series with a small resistor3, r, (the internal resistance).
The maximum battery current flow (achieved if the external circuit is a “short” i.e., R →
0) is V/r. Laboratory power supplies (“battery eliminators”) usually have an adjustable
maximum current limit (that can be achieved without damaging the device). When this
current limit is reached the supplied voltage will be automatically reduced so no additional
current will flow. When operating in this mode (current pegged at the upper limit, with
actual output voltage varying so that current is not exceeded) the power source is acting
as a nearly ideal current source. An ideal current source would produce a constant current,
arbitrarily increasing the voltage if that currents meets a big resistance. In a simple circuit
consisting of a current source and a resistor, the power dissipated in the resistor (which is
the same as the power produced by the current source) is I2R. Thus as R → ∞ infinite
power is required. No surprise: infinite power is not available, so ideal current sources do not
exist. Every real current source has some sort of voltage limit built in. Real current sources
can be modeled as ideal current sources in parallel with a (large) internal resistance4.

3Thévenin’s Theorem claims most any two terminal device can be thought of this way!
4Norton’s Theorem claims most any two terminal device can be thought of this way!
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A.C. Voltage Sources

A function generator is a common source of a.c. signals. A function generator can produce
a variety of wave shapes (sinusoidal, square, triangle, . . . ) at a range of frequencies, and
can even ‘sweep’ the frequency (i.e., vary the frequency through a specified range during a
specified period). Usually the signals are balanced (i.e., produces as much positive voltage
as negative), but a d.c. offset can be added to the signal, for example, producing a voltage
of the form

A cos(2πft) +B (1.2)

(In this case the d.c. offset would be B, the amplitude would be A, and the peak-to-peak
voltage would be 2A.) Most function generators are designed to have an internal resistance
of 50 Ω and maximum voltage amplitude of around 10 V. Generally they have a power
output of at most a few watts.

Certainly the most common a.c. source is the wall receptacle: 120 V at a frequency of
60 Hz. Transformers can be used to reduce this voltage to less dangerous levels for lab use.
A ‘variac’ (a variable transformer) allows you to continuously vary the voltage: 0–120 V.
Relatively large power (> 100 W) and current (> 1 A) can be obtained in this way. Of
course the frequency is not changed by a transformer; it would remain 60 Hz.

Electrical Measurement

Digital Multimeter (DMM)

The most common measurement device is the digital multimeter (DMM). Feel free to call
these devices ‘voltmeters’, but in fact they can measure much more than just volts. For
example, the Keithley 169 is fairly generic, measuring volts (a.c. and d.c.), amps (a.c. and
d.c.), and ohms. The hand-held Metex M-3800 measures the above and adds transistor
hFE and diode test. The bench-top DM-441B measures all of the above and frequency too.
The ease of switching measurement options should not blind you to the fact that these
measurement options put the DMM into radically different modes. If, for example, the
DMM is properly hooked up to measure voltage and — without changing anything else —
you switch the DMM to measure amps, most likely something will be destroyed: either the
DMM or the device it is connected to. Please be careful!

Recall that voltage (or more properly potential difference) is a measurement of the electrical
‘push’ applied to an electron as it moves through a section of the circuit. It is analogous
to water pressure in that the difference in the quantity determines the driving force. (No
pressure difference; no net force.) Note that the presence of big ‘push’, in no way guarantees
that there will be a large resulting flow (current). A large resistance (or for a.c. circuits,
impedance) can restrict the flow even in the presence of a big push. In fact, large current
flows are often driven by very small voltage differences as a very fat (small resistance) wire
is provided for the flow. Wires work by having very small resistance; an ideal wire has zero
resistance, and hence nearly zero voltage difference between its two ends.
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A

an ammeter acts 
like a short circuit

V

a voltmeter acts 
like a open circuit

Figure 1.3: The schematic symbols for basic meters. An ammeter must substitute for an
existing wire to work properly, whereas a voltmeter can be attached most anywhere.

A voltmeter measures the potential difference across or between the two selected points. A
good voltmeter is designed to draw only a small current so it must be equivalent to a large
resistance. Modern DDMs typically have input impedances greater than 1 MΩ. Voltmeters
with even larger resistance (TΩ) are called electrometers. An ideal voltmeter would draw
no current; it would be equivalent to an ‘open circuit’. (An open circuit [R → ∞] is the
opposite of ‘short circuit’ [R → 0] which is obtained if the two points are connected by an
ideal wire.) Since voltmeters draw only a small current, they should not affect the circuit
being measured. This makes the voltmeter an excellent diagnostic tool.

Voltmeters always measure the voltage difference between the two probes (e.g., to measure
the ‘voltage across’ a device place probes at opposite ends of the device). More commonly
you are asked to measure the voltage at a point. Those words imply that the black (a.k.a.
common) probe is to be placed at ground. (In fact you’ll soon learn that oscilloscopes are
designed as one-probe-at-ground voltmeters.)

Measurement of the current flow through a wire, necessarily requires modification of the
circuit. The flow normally going through the wire must be redirected so it goes through the
ammeter. This requires breaking the path that the current normally uses, i.e., cutting the
wire and letting the ammeter bridge the two now disconnected ends. (With luck, the wire
may not need to be literately cut, perhaps just disconnected at one end.) Because current
measurements require this modification of the circuit under study, one generally tries to
avoid current measurements, and instead substitute a voltage measurement across a device
through which the current is flowing. Knowledge of the impedance of the device will allow
you to calculate the current from the voltage. Because an ammeter substitutes for a wire,
it should have a very small resistance. An ideal ammeter would have zero resistance, i.e.,
be a short circuit between its two leads. (Note that this is the opposite of a voltmeter,
which ideally has an infinite resistance between its two leads.) Real ammeters require a
small voltage drop (typically a fraction of a volt for a full scale reading) to operate. This
small ∆V is called the voltage burden.

I say again: converting a DMM from voltmeter to ammeter makes a drastic change from
open circuit to short circuit. Making such a switch in a DMM connected to a circuit usually
results in damaging something. Poking around in a circuit with a voltmeter is unlikely to
cause damage, because the voltmeter acts like a huge resistor (not that different from the
air itself). Poking around in a circuit with an ammeter is quite likely to cause damage, as
it is linking two points with a wire, i.e., adding short circuits between points in the circuit.

A DMM measures resistance by forcing a current through the leads and, at the same time,
measuring the potential difference between the leads. The resistance can then be calculated
by the DMM from R = V/I. Note that since a DMM in resistance mode is sending a
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current through its leads (‘sourcing current’) and assuming that this current is the only
current flowing through the device, you cannot measure the resistance of a powered device.
Furthermore, you can almost never use the DMM to measure the resistance of a device
attached to an existing circuit because the current injected by the DMM may end looping
back through the circuit rather than through the device. (In addition injecting current into
a circuit at random places may damage some components in the circuit.) Thus to measure
the resistance of something, you almost always have to disconnect at least one end of it
from its circuit.

Lab Reminder: For accurate measurement you must use the appropriate scale: the
smallest possible without producing an overscale. DMM’s may report an overscale condition
by a flashing display or a nonsense display like: . Similarly, for significant DMM
measurements you should record in your notebook every digit displayed by the DMM.

Lab Reminder 2: Manufacturers typically report DMM errors as a percentage of the
reading plus a certain number of “digits”. In this context, one digit means a 1 in the
rightmost displayed digit and zeros everywhere else; two digits means a 2 in the rightmost
displayed digit and zeros everywhere else; etc. (One digit usually means the same thing as
the ‘resolution’ of the meter.) Consider a DMM display: 1.707 with an error reported to
be “2% + 3 digits”. The error is: 1.707 × .02 + .003 = .037. Recall the Lab Lint rules for
reporting errors: at most 2 sigfigs in the error and the rightmost displayed decimal place in
the error matches (in place value) the rightmost decimal place in the number.

A.C. DMM Measurements

Some special considerations are needed when using a DMM to measure a.c. currents or
voltages. First, DMMs give accurate readings only for frequencies in a limited range. DMMs
fail at low frequencies because DMMs report several readings per second and, in order to
be properly measured, the signal needs to complete at least one cycle per reading frame.
Thus f > 20 Hz or so for accurate readings. At the high frequencies, the input capacitance
(∼ 100 pF) of the DMM tends to short out the measurement (recall the impedance of a
capacitor at high frequency is small). No SJU DMM operates accurately above 0.3 MHz;
some DMMs have trouble above 1 kHz. The DMM’s manual, of course, reports these
specifications.

Recall that a.c. signals are time-variable signals . . . there is no steady voltage to report as
“the” voltage. The solution is to report root-mean-square (‘rms’) quantities. (The square
root of the average of the square of the voltage.) Since this is a complex thing to calculate,
most cheap DMMs assume that the signal is sinusoidal so that there is a relationship between
the rms value and the peak value:

Vrms = Vpeak/
√
2 (1.3)

These cheap DMMs find the peak voltage, divide it by
√
2 and report the result as if it

were an rms voltage. This of course means the meter reports faulty values if non-sinusoidal
signals are applied. “True rms” meters properly calculate the rms quantities.
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Figure 1.4: The Tektronix TDS 1002B is a two channel digital storage oscilloscope (DSO).
Pushing a button in the Menu Select region displays a corresponding menu of the items to be
re-configured adjacent to the option buttons. (The multifunction knob allows a continuous
variable to be modified.) The vertical region has knobs that control the size (volts/div)
and position of vertical (y) scales for channel 1 (CH 1) and channel 2 (CH 2). Push buttons
in this region control the display of menus for those channels and combinations of those
channels (math). The horizontal region has knobs that control the size (sec/div) and
position of horizontal (x) scales. In addition to the Main time-base, this dual time-base
scope can blow up a selected portion (“Window”) of the display. The controls to do this are
in the horiz menu. The trigger region has a knob that controls the voltage level for
the triggering and the trig menu button allows the display of configurable options for the
trigger. Note particularly the autoset, default setup, and help buttons to the right of
the Menu Select region.
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Figure 1.5: An oscilloscope displays one wave-section after another making an apparently
steady display. Determining when to start a new wave-section is called triggering. The level
and slope of the signal determine a trigger point. The trigger point is placed in the center
of the display, but it can be moved using the horizontal position knob. The holdoff is an
adjustable dead time following a triggered wave-section.

Oscilloscope

Generally speaking DMMs work in the ‘audio’ frequency range: 20 Hz – 20 kHz. ‘Radio
frequency’ (rf, say frequencies above 1 MHz) require an alternative measuring device: the
oscilloscope (a.k.a., o’scope or scope). Unlike the DMM, the oscilloscope usually measures
voltage (not current). Also unlike the DMM, the scope effectively has only one lead: the
‘black’ lead of the scope is internally connected to ground; the voltage on the ‘red’ lead is
displayed on the screen. (Note: with a DMM you can directly measure the 1 V potential
difference between two terminals at 100 V and 101 V. You cannot do this with a scope—its
‘black’ lead is internally connected to ground so if you connect it’s ‘black’ lead to the 100 V
terminal you will cause a short circuit [the 100 V terminal connected to ground through the
scope, which will probably damage either the device or the scope].) While a DMM takes a
complex waveform and reduces it to a single number: Vrms, a scope displays the graph of
voltage vs. time on its screen.

Oscilloscopes are generally used to display periodic signals. Every fraction of a second, a
new section of the wave is displayed. If these successively displayed wave-sections match,
the display will show an apparently unchanging trace. Thus the triggering of successive
wave-sections is critical for a stable display. And an unsteady display (or a display with
‘ghosts’) is a sign of a triggering problem. In addition, the scales used for the horizontal
and vertical axes should be in accord with the signal. (That is you want the signal to
neither be off-scale large or indistinguishable from zero. A too large time (horizontal) scale
will result in displaying hundreds of cycles as a big blur; a too small time scale will result
in just a fraction of a cycle being displayed.)

Oscilloscope Controls and How To Use Them

Pre-lab Exercise The knob-filled face of an oscilloscope may appear intimidating, but
the controls are organized in a logical and convenient way to help you recall their functions.
The class web site contains a line drawing of an oscilloscope (TDS1002Bscope.pdf). Print
out this diagram and have it in hand as you read this section. As each control is discussed
below a circled number (e.g., 1♠) appears. Find this control on the line drawing and label
it with that number. Attach your diagram in your notebook. The name of each control or
feature will be printed in SmallCaps Text.
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Display Section The left hand side (lhs) of the scope is dominated by the display or
screen 1♠. Note that there is a USB port 2♠below the display—this allows you to save
scope data and display images on a thumb drive! There is an additional USB port in the
back. The power switch is on top of the scope, lhs.

Vertical Sections Right of the option buttons 25♠– 29♠are the knobs and buttons that
control the vertical portions of the graph. Typically the display shows a graph of voltage
(y or vertical) vs. time (x or horizontal). This scope has two BNC5 inputs so the vertical
section is divided into two sections with identical controls for each input. The inputs are
called channel 1 (CH 1) 5♠and channel 2 (CH 2) 10♠. The scale factor for each input is
determined by the corresponding volts/div knob 6♠& 11♠; the vertical location of zero
volts on the screen is determined by the corresponding position knobs 8♠& 13♠. Note
that the scale factors and the zero location for the channel traces are independently set.
Therefore the graph axes can not show values in physical units (volts), rather the graph is
displayed on a 8× 10 grid with units called divisions. (Note that a division is about a cm.)

The volts/div (or sensitivity) knobs are similar to the range switch on a multimeter. To
display a 2 volt signal, set the volts/div knob to 0.5 volts/div. A trace 4 div high will then
be obtained, since 4 div × 0.5 V/div = 2 V. The current settings of these sensitivity knobs
is displayed in the lower lhs of the display. You should always try to adjust the sensitivity
so that the signal displayed is at least 3 div peak-to-peak.

The traces from the two channels look identical on the screen; the symbols 1-◮ and 2-◮ on
the lhs of the display show the position of zero volts for each trace. If you are unsure which
trace is which, moving a position knob will immediately identify the corresponding trace.

The ch 1 and ch 2 menu buttons 7♠& 12♠produce menus controlling how the corre-
sponding input is modified and displayed. In addition pushing these menu buttons toggles
the display/non-display of the corresponding signal.

The top menu item in ch 1 and ch 2 menus, is Coupling, with options: DC, AC, Ground.
These options control how the signal supplied to the BNC is connected (coupled) to the
scope’s voltage measuring circuits. The Ground option means the scope ignores the input and
instead the display will graph a horizontal line at zero volts (ground) — this allows you to
precisely locate and position the zero volt reference line for that channel on the grid. When
AC is selected a capacitor is connected between the inputted signal and scope’s electronics.
This capacitor prevents any d.c. offset voltage from entering the scope’s circuits. Thus any
d.c. offset will be subtracted from the signal and the display will show the remaining signal
oscillating around a mean of zero volts. The usual selection for Coupling is DC, which means
the signal is displayed unmodified.

Proper Practice: Use Coupling◮DC almost always. Exceptional circumstances like a d.c.
offset larger than an interesting a.c. signal (i.e., B ≫ A in Eq. 1.2) or a requirement to
measure an rms voltage in the usual way, i.e., with any d.c. offset removed, may force
occasional, brief uses of Coupling◮AC, but don’t forget to switch back to Coupling◮DC
ASAP.

5According to Wiki, this denotes “bayonet Neill-Concelman” connector. This coaxial cable connector is
very commonly used when signals below 1 GHz are being transmitted. You can also use Wiki to learn about
banana connectors, RCA plugs, and alligator clips (a.k.a. crocodile clips).
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(a) Channel 1 Menu (b) Cursor Menu

(c) Measure Menu (d) Trigger Menu

Figure 1.6: Buttons (often in the Menu Select region) control which menu appears on the
rhs of the display. Here are four examples.
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In between the ch 1 and ch 2 menu buttons, find the math menu 9♠button. which is
used to display combinations of CH 1 and CH 2 (+,−,×) and Fourier transforms (FFT)
of either signal.

Probe The second item from the bottom in the ch 1 and ch 2
menus is Probe. “Probe” is the name for the device/wire that con-
nects the scope to the signal source. In this course most often your
probe will be nothing more complex than a wire, so the choice should
be 1X Voltage. Note that this is not the factory default choice (which
is 10X Voltage). So one of the first things you should do on turning
on a scope, is check that the the probe actually attached to the scope
matches what the scope thinks is attached to the scope. (If there is
a mis-match, all scope voltage measurements will be wrong.) There
is a probe check button 3♠on the scope to help you establish the
attenuation of an unlabeled probe, but usually probes are labeled
and it is faster just to immediately set the probe type yourself in the
corresponding channel menu. Note: most probes used in this class
have a switch to select either 10× or 1× attenuation. All SJU probes
are voltage probes.

1
0

X
1

X

Input

Ground

1×  or  10×
Switch

Note: A probe is a scope-only accessory: it should not be attached to any other device.
(While a simple wire can act as a scope probe, a scope probe is in general more than a
simple wire and therefore should not substitute for a simple wire.)

FYI: The name “10×” on a probe is quite confusing: “÷10” would be a better name as
the voltage that reaches the scope has been reduced by a factor of 10. Why reduce a signal
before measuring it? Because it reduces the probe’s impact on the circuit it is connected to.
A 10× probe has a larger impedance (smaller capacitance and larger resistance) than a 1×
probe and hence affects the circuit less. This is particularly important when high frequency
signals are measuremented (which are not the focus of this class).

Horizontal Section In the center-right of the scope face, find the horizontal section.
Just as in the vertical sections, there are knobs that control the horizontal scale (sec/div

15♠) and horizontal position 18♠. In a single time-base scope, all the input channels must
be displayed with the same horizontal scale (unlike the vertical scale). In this dual time
base scope, a portion of the display can be expanded in a Window. The window controls are
found in the horiz menu 17♠. When using the window feature the Main sec/div setting is
labeled M and the Window sec/div setting is labeled W.

Trigger Section As you might guess, the process of determining when to trigger and
display the next wave-section is the most complex part of a scope. Luckily most often
the default settings will work OK. Generally you will want to trigger when the wave has
reached a particular level 23♠. But which wave? The trig menu 22♠allows you to
set the Source: CH1, CH2, Ext (the signal connected to the ext trig BNC 14♠in the
horizontal section), Ext/5 (the same signal, but first attenuated by a factor of 5—useful for
larger triggering signals), or AC Line (which uses the 60 Hz, 120 V receptacle power line
as the triggering signal—useful for circuits that work synchronously with the line voltage).
Just as in the vertical section, the Coupling of this source to the triggering electronics can
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occur in a variety of ways: subtract the dc offset (AC), filter out (attenuate or remove) high
frequency (HF Reject, “high” means > 80 kHz), filter out low frequency (LF Reject, “low”
means < 300 kHz), use hysteresis to reduce the effects of noise (Noise Reject), or directly
connected (DC). Note: triggering with Coupling◮AC is a common choice as then a level of
zero is sure to match the wave at some point. Similarly Noise Reject is not an uncommon
choice. The above options go with Type◮Edge. There are additional sophisticated and
useful triggering modes for Type◮Pulse and Type◮Video.

Measure Menu The measure menu 36♠allows up to five measurements to be con-
tinuously updated and displayed. Push on one of the option buttons and a new menu is
displayed allowing you to set the Source: CH1, CH2, MATH, and the Type: Freq, Period,
Mean (voltage), Pk-Pk (peak-to-peak, i.e., the full range of voltage from the lowest valley to
the highest peak), Cyc RMS (the root-mean-square voltage of the first complete cycle), Min
(minimum voltage), Max (maximum voltage), Rise Time, Fall Time (10% to 90% transitions),
Pos(itive) Width, Neg(itive) Width (using the 50% level).

Warning: Unlike a DMM on AC, the option Cyc RMS does not subtract the d.c. offset
before calculating rms voltage. You can assure yourself of a DMM-like rms result only if
the channel is switched to Coupling◮AC.

If a measurement is displayed with a question mark, try switching scales. (Generally the
scope wants signals that are several divisions high and complete at least one—but not too
many—cycles in the display.)

Cursor Menu The cursor menu 37♠enables a pair of Type◮Amplitude or Type◮Time
measuring lines. With Amplitude cursors, a pair of horizontal lines (“cursors”) appears.
Hitting the appropriate option button allows the multifunction knob to move each cursor
up or down to the required place. The voltage for each cursor is displayed along with the
difference (∆V ). With Time cursors, a pair of vertical lines appears. Hitting the appropriate
option button allows the multifunction knob to move each line (cursor) right or left to the
required place. The voltage and time for each cursor is displayed along with the differences
(∆t, ∆V ), and frequency 1/∆t.

Display Values The bottom of the display is used to report key numerical values like
scale settings. A typical example:

CH1 500mV CH2 2.00V M 1.00ms CH1 ✁✁ 0.00V
23-Nov-07 13:03 1.01407kHz

The first two numbers of the first line are the volts/div for channels CH1 and CH2, M
refers to the main time-base of 1 ms/div, and the final sequence reports that positive edge
triggering at a level of 0.00 V is being used with channel 1 as the source. The second line
shows the date/time and the frequency of the triggering signal.

Run/Stop In normal operation, the scope is constantly updating the display. It is pos-
sible to freeze the display (i.e., take a snapshot of the voltage vs. time graph) using the
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run/stop 44♠or single seq 43♠buttons.

Hit Me First The scope remembers option settings between uses. Thus unless you are the
sole user of the scope it is wise to set it to a well defined initial state before proceeding. The
default setup 41♠achieves this goal (but it sets the Probe◮10X Voltage, in the channel
menus—which is not usually desired in this class). Similarly the autoset 42♠button will
attempt to make rational choices for scale factors, etc. given the signals connected to the
scope. If you want you can save commonly used setups using the save/recall 34♠menu
button.

Problems

1. (a) A 1.5 V battery can be modeled as an ideal 1.5 V voltage source in series with a
1 Ω resistor. If this battery is connected to a 10 Ω resistor (see below left), what
voltage is actually across the 10 Ω resistor? If the 10 Ω resistor is removed and
the voltmeter is directly attached to the battery, what voltage will it display?

(b) A 1 mA current source can be modeled as an ideal 1 mA current source in parallel
with a 1 MΩ resistor. If this source is connected to a 10 kΩ resistor (see below
right), how much current actually flows through the 10 kΩ resistor? If the 10 kΩ
resistor is removed and an ammeter is directly attached to the battery, what
current will it display?
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power supply
current source

10 kΩ

2. (a) A voltage source produces a voltage V when its terminals are disconnected (open
circuit). When a device that draws a current I is connected across its terminals,
the voltage decreases to V −∆V . What is the internal resistance?

(b) A current source produces a current of I when a wire connects the terminals.
When a device is instead connected to the terminals the current drops to I −∆I
and the voltage across the terminals is V . What is the internal resistance?

3. An a.c. voltage source follows the equation: v(t) = A sin(ωt+ φ) +B
where A = 5 V, B = 1 V, ω = 1000 rad/s, and φ = .45 rad. Report values for the
following:

(a) average voltage (d.c. offset)

(b) voltage amplitude

(c) peak voltage

(d) peak-to-peak voltage

(e) rms voltage

(f) voltage at t = 0

(g) frequency

(h) period
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4. The manual for a stereo amplifier warns that it can be damaged if its “outputs are
too heavily loaded”. What sort of resistor would constitute a “heavy load”: (A)
R = 1 MΩ or (B) R = 1 Ω? Explain!

5. (a) A current of 3 mA flows into a circuit consisting of 3 resistors, and 10 mA
flows out (see below left). Report the readings on the three voltmeters. Draw a
schematic diagram showing which lead on each voltmeter is the ‘red’ lead.

(b) An unknown device is connected in a circuit with a 9 V battery and a 15 kΩ
resistor (see below right). The ammeter reads 0.5 mA. What does the voltmeter
read?

5.6 kΩ

2.7 kΩ1.8 kΩ

3 mA

10 mA
V2

V1

V3

+

−
9 V

15 kΩ
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V

A

?? mA

6. What is the resistance (when operating) of a 100 W light bulb operating from a 120 V
source?

7. An ideal ammeter should act like a wire and hence have zero volts between its ter-
minals. However real ammeters are less than perfect. The specifications for Keithley
196 in d.c. amps mode reports it has a voltage burden of about .15 V when measuring
100 mA on the proper scale. If you use a 196 to measure the current through a 15 Ω
resistor powered by a 1.5 V battery, what current does it read?

8. Which light bulb in the below left circuit shines the brightest? Why? Which light
bulb shines the dimmest? Why?

A B

CD +

−
A

V

V +

−

A

parallel series

9. (a) An ammeter and a voltmeter are connected in parallel with an ideal battery. Are
either likely to be damaged? Why? Will either read the current or voltage of
the battery? Why?

(b) An ammeter and a voltmeter are connected in series. Are either likely to be
damaged? Why? Will either read the current or voltage of the battery? Why?

10. An ideal voltmeter V1 is used to measure the voltage across the series combination
of a battery and 1 kΩ resistor; an ideal voltmeter V2 is used to measure the voltage
across the battery alone. Which of the below is correct?

(a) V1 > V2

(b) V1 = V2

(c) V1 < V2
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11. The picture (right) shows a circuit in which a battery powers a light bulb.

(a) Make a careful drawing showing how the voltage produced
by the battery could be measured. Include details like ex-
actly where the red and black leads on the voltmeter would
be attached.

(b) Make a careful drawing showing how the current produced
by the battery could be measured. Include details like ex-
actly where the red and black leads on the ammeter would
be attached.

D
 C

el
l

1.
5 

V
 B

at
te

ry

12. The specifications for a Keithley 169 DMM say that,
when operating in a.c. volts mode, the inputs look like
1 MΩ in parallel with 100 pF (see right). At what fre-
quency is the current equally shared by the capacitor
and the resistor?

1 
 M

Ω

10
0 

pF

V

Keithley 169
a.c. volts mode

13. A typical lab power supply has knobs labeled Voltage Adjust and Current Ad-
just. If you turn the voltage knob the output voltage changes, but if you turn the
current knob nothing seems to change and the current meter continues to read zero.
Explain!

14. A function generator has an output impedance of 50Ω and, when unloaded and ad-
justed to produce its maximum output, produces a voltage amplitude of 10 V. What
is the maximum power that can be transferred to an external device attached to the
function generator?

15. In the circuit shown right, find the rms voltage
drop across each component and phase shift
between that voltage and the current.
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0.2 H
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  k
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z

1 kΩ

16. Oscilloscope — True or False:

(a) When the vertical input coupling is set to dc mode, the voltage of an a.c. wave-
form cannot be measured.

(b) When the vertical input coupling is set to ac mode, the voltage of a battery
cannot be measured.

17. A circuit consists of an inductor (inductance L) connected directly to a 120 V, 60 Hz
wall receptacle. What is the smallest L you could use and avoid blowing the 20 A
fuse? A similar circuit consists of a capacitor connected directly to a wall receptacle.
What is the largest C you could use and avoid blowing the fuse?
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18. Manufacturers typically report DMM errors as a percentage of the reading plus a
certain number of “digits”. In this context, an error of one digit means an error
numerically equal to a 1 in the rightmost displayed digit and zeros everywhere else;
two digits means a 2 in the rightmost displayed digit and zeros everywhere else; etc.
Consider a DMM display: 0.707. Find the absolute error in this reading if the device
is:

(a) MeTex-3800 DC current, 2 mA range.

(b) MeTex-3800 AC current at 500 Hz, 2 A range.

(c) Sinometer DM-97 resistance, 4 kΩ range.

(d) Sinometer DM-97 AC volts at 200 Hz, 4 V range.

The specification sheets can be found posted in the lab (PE116) or in the manuals
in the physics library. Please note that errors should ALWAYS be rounded to one or
two significant figures.

19. Work the previous problem assuming the display reads: 0.007

20. The section describing oscilloscope controls identified controls with a circled number
like: 1♠. On the class web site, find and print the file TDS1002Bscope.pdf which
is a line drawing of an oscilloscope. On this hardcopy, locate every control and label
each with the appropriate number.

21. The below left diagram shows a single sinusoidal scope trace. Determine: the peak-to-
peak voltage, the voltage amplitude, the rms voltage, the wave period and frequency.
Assume that the bottom of the scope display reads:

CH1 500mV M 1.00ms Ext ✁✁ 0.00V

22. The above right diagram shows a pair sinusoidal scope traces. Assume that the scope
controls are set as in the previous problem with CH 2 (dotted) and CH 1 (solid)
identical. Which trace is lagging: dotted or solid? What is the phase shift in degrees?
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Electrical Measurement Lab
DC & AC Measurements
Oscilloscope & Filters

Work individually please!

0. Basic DC measurements. DMM errors required only for 1–4 below.

1. Select a resistor from the “370 Resistors” cup. Sketch your resistor carefully recording
the color of the bands on it. Decode the color bands to find the manufacturer’s
reported resistance. Hang on to this resistor! You must turn it in with your lab
report.

2. Using a Sinometer DM-97 DMM measure the resistance of your resistor. Record
the result with an error. Using a Metex 3800 DMM, measure the resistance of your
resistor. Record the result with an error. Are your results consistent?

3. Find one of the dual battery packs with black and red leads attached. Using a Sinome-
ter DM-97 DMM measure the voltage of the pack. Record the result with an error.
Using a Metex 3800 DMM, measure the voltage of the pack. Record the result with
an error. Are your results consistent?

4. Calculation: R = V/I. Build the circuit shown using your battery pack as the ‘power
supply’.

Measure the voltage across your resistor with a Sinometer
DM-97 DMM (record the result with an error). Simulta-
neously measure the current through the resistor with a
Metex 3800 DMM (record the result with an error). Cal-
culate the resistance of the resistor along with its error. Is
your calculated resistance consistent with those measured
in #2? (If it isn’t consult your lab instructor.) I bet the
voltage measured here is less than that in #3 above. This is
a consequence of the internal resistance of the battery pack
(N.B. homework problems 1 & 2) that I call voltage droop
and also related to the voltage burden of the ammeter (N.B.
homework problem 7) and measured in #8 below. You are
now done with the battery pack.

A

VR

power
supply

5. Find a lambda power supply. Record its model number. Turn all three of its knobs
to mid-range values; leave the terminal plugs unconnected. Notice that the terminal

plugs are labeled: + (red), (white), − (black). Which terminals should you use
to have the power supply function like the battery pack? What is the purpose of the
third terminal?

6. Plug-in/turn on the power supply. Switch the meter switch to voltage and adjust
the voltage adj knobs (both course and fine) until the meter reads approximately
the same as #3 above. Now attach a DMM to the power supply. Using the fine
voltage adj knob try again to match the output of the battery pack. (It need not
be perfect.)

7. Reform the circuit of #4 now using the power supply adjusted to match the bat-
tery pack. Measure and record the voltage across and current through your powered
resistor and compare to the obtained in #4 above. Why the difference?
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8. Voltage Burden of Ammeter. Move the voltmeter in the above circuit so as to measure
the voltage drop across the ammeter (rather than your resistor). Report the result.
(Note for an ideal ammeter: ∆V = 0 V.)

9. Disconnect the DMMs, and make a circuit where the power supply is directly attached
to the resistor. Holding the resistor between your fingers carefully and slowly raise
the voltage produced by the power supply. At some point (typically > 20 V) the
resistor should start to warm up. Using the power supply meter, record the voltage
that produced a noticeable heating effect. Calculate the power (watts) required for
this heating effect. (No need to calculate error.)

10. Return the power supply to the approximate voltage level produced by the battery
pack and disconnect your resistor. Switch the meter switch to current. Use a
banana plug wire to short circuit the output of the power supply. (Note that short
circuiting most devices will result in damage. These lab power supplies are [I hope] an
exception to this rule.) Notice that the current adj knob now allows you to set the
current through the wire (and of course the voltage across the wire is nearly zero). As
long as the output voltage is less than the set voltage limit, the current adj knob
is in control. If (as before) the current is below the set current limit, the voltage
adj knob is in control. Thus if the voltage limit is set high, you have an adjustable
current source; if the current limit is set high, you have an adjustable voltage source.

11. Voltage divider. “Pot” = potentiometer.

Set up the potentiometer circuit shown and power it
with the lambda power supply. Measure Vout with a
DMM. This is a classic voltage divider. Notice that by
adjusting the pot, any fraction of the supplied voltage
can be produced. Note: To measure Vout, attach a
voltmeter between the bubbles.

+

−
Vout

0. Basic AC measurements. For this and following sections you need not report errors
in measurements, but always record every digit displayed on the DMM or scope and
use devices on proper scales/ranges.

1. Wavetek 180 as ac power source

Set up the circuit shown using your resistor, a Metex
3800 voltmeter, and your Wavetek 180 (as the ac
voltage source). Start with all the Wavetek knobs
fully counter-clockwise. (This is basically everything
off and sine wave function selected.) Using the big
knob and the freq mult knob, set the frequency to
1 kHz. This will also turn on the Wavetek.

V

2. Adjusting the amplitude knob will change the output voltage. What range of volt-
ages can be obtained from the hi BNC output? How about the lo BNC output?

3. Set an output voltage of approximately 1 V at a frequency of about 100 Hz. Increase
the frequency to find the highest frequency for which the reported voltage remains in
the range 0.95–1.05 V (i.e., within 5% of the set value)—this will require use of the
freq mult knob. Report the voltmeter you’re using, its reported voltage, and the
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frequency. Further increase the frequency until the voltmeter reports a voltage under
0.5 V. (Record that voltage and frequency.) The apparent change in voltage you are
seeing is really mostly due to the failure of the voltmeter to work at high frequency.
As you’ll see below the Wavetek’s output amplitude really is fairly constant as the
frequency is varied.

4. With the output voltage still set at approximately 1 V, set the frequency to 100 Hz,
and measure the ac current through and the ac voltage across your resistor. (The
required circuit is analogous to #4 in DC measurements. You might want to have
your instructor check your circuit before powering up.) Calculate the resistance (no
error calculation required). Your result should be consistent with previous resistance
measurements. Measure the current again at a frequency of 1 kHz. Does the current
(and hence resistance) vary much with frequency?

5. Select a capacitor from the “370 Capacitor” cup. (All of these capacitors are identical.)
Replace your resistor with that capacitor. With the 100 Hz, 1 V output, measure the
current through and voltage across the capacitor using the same circuit as you used
for the resistor. Calculate the “resistance” (actually reactance, i.e., V/I). Using your
calculated reactance, calculate the capacitance (see Fig. 1.1 on page 22 if you’re unsure
of the definition of C). Measure again at a frequency of 1 kHz. Does the current (and
hence reactance) vary much with frequency? Again calculate the capacitance—it
should be nearly the same even though the current should be nearly ten times bigger.

0. Basic scope measurements. Note: A “scope trace sketch” should include: hor-
izontal and vertical scale settings (and the size of a div on your sketch—this is one
place where quad ruled notebook paper helps!), the location of ground (zero volts),
and the signal frequency. All of these numbers are on the scope display. In addition
report the type of Coupling being used on the displayed channel. Feel free to report
“same settings as previous” if that is the case.

1. Set up the scope (with scope probe) and a Metex 3800
DMM to monitor the function generator as shown.
Set the function generator to produce a ∼1 V sine
wave at a frequency of ∼1 kHz. Turn on the scope
and hit default setup. You must now change both
CH1 and CH2 to 1× probe from the default value of
10× probe. Fiddle (or not) with the controls until you
have a nice stable display of the signal on the scope.
Sketch the scope trace.
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2. Record the size (in units of divisions on the display) for: the peak-to-peak voltage
(Vpp), the amplitude or peak voltage (Vp), and the period (T ) of the wave. Convert
these to physical units (volts, seconds) using the scale factors. Calculate the frequency
from the period and compare to the set value. Calculate the rms voltage from the
peak voltage and compare to the DMM value. Hit the measure menu and arrange
the simultaneous display of Freq, Period, Pk-Pk voltage, Cyc RMS voltage, and Max
voltage. Compare these values to those you calculated from divisions.

3. Run the function generator frequency up to and beyond the limiting value determined
in previous section, #3. Notice that the scope (correctly) shows a constant amplitude
even as the voltmeter (incorrectly) shows a changed voltage at high frequency.
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4. Set the frequency to 100 Hz. Vary the function produced by the function genera-
tor: try sine, triangle and square waves. For each wave, record the scope-reported
peak-to-peak and rms voltages. Also record the rms voltage reported by the DMM.
Theoretically for a square wave: Vrms = Vpp/2; for a triangle wave: Vrms = Vpp/2

√
3;

for a sine wave: Vrms = Vpp/2
√
2. Compare these calculated rms voltages to those

directly reported by the scope and DMM. Which device appears to most accurately
report Vrms for different wave shapes, i.e., is a “true rms” meter? Explain.

5. Confirm that —as usual— the channel is set: Coupling◮DC. In the measure menu
change the measurement of Period to Mean (voltage). Find the dc offset knob on
the function generator. Monitor the scope display and produce a ∼1 V amplitude sine
wave with a ∼1 V dc offset. Sketch the resulting scope trace. Record the DMM ac
voltmeter reading; record the scope Cyc RMS voltage. Switch the DMM to dc volts
and record the dc voltage the reading; record the scope Mean voltage.

Switch the scope’s input channel to Coupling◮AC, and repeat the above sketches and
measurements.

To answer the following questions you will need to wiggle the dc offset knob on
the function generator and switch the channel’s Coupling. Start with the usual
Coupling◮DC.

Questions:

(a) Does a dc offset affect the reading of the DMM on dc volts?

(b) What feature of the signal is recorded by the DMM on dc volts?

(c) Does a dc offset affect the reading of the scope Mean voltage:
When Coupling◮DC? When Coupling◮AC?

(d) Under what coupling will a DMM’s dc volts and a scope’s Mean voltage agree
(approximately)?

(e) Does a dc offset affect the reading of the DMM on ac volts?

(f) Does a dc offset affect the reading of the scope Cyc RMS voltage:
When Coupling◮DC? When Coupling◮AC?

(g) Under what coupling will a DMM’s ac volts and a scope’s Cyc RMS voltage agree
(approximately)?

0. Filters.

In many circumstances in electronics we are concerned with the ratio of voltages
(or powers, currents, etc.), e.g., A ≡ Vout/Vin for an amplifier’s gain. Generally an
amplifier is designed to produce an output Vout proportional to its input Vin but much
greater, i.e, A ≫ 1. On the other hand, sunglasses aim to reduce or attenuate light
before in enters the eye; A < 1 for attenuation. Such ratios are most often reported
in decibels (dB):

20 log10 (Vout/Vin) (2.1)

Thus if an amplifier increases the voltage by a factor of 10 (i.e., A = 10), we would
say the amplifier has a gain of 20 dB. Some common examples:
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amplification attenuation
A dB A dB

100 40 1
100 −40

10 20 1
10 −20

2 6 1
2 −6√

2 3 1√
2

−3

1 0 1 0

An electronic filter aims to pass certain frequencies and attenuate others. For example,
a radio antenna naturally picks up every frequency; an electronic filter must attenuate
all but the desired frequency. We start here with a low pass filter : a filter that lets low
frequencies pass nearly untouched, but attenuates high frequencies. It is impossible
to have step changes in attenuation, so as the frequency is increased, A goes smoothly
to zero. Traditionally the curve of A vs. f is presented as a log-log plot and is called
a Bode1 plot. Filters are usually characterized by their “−3 dB” frequency (f−3dB),
i.e., the frequency2 at which A = 1/

√
2 ≈ .707.

For the following measurements you will use a sinusoidal signal with no dc offset and
a very large range of frequencies and output voltages: Remember to adjust your scope
scales appropriately. Voltage measurements are most commonly done as Cyc RMS
with Coupling◮AC but since a ratio is involved you could use Pk-Pk or most any other
amplitude measurement—theoretically as long as the voltages are in proportion the
ratio will be invariant.

1. Solder together a lead from your resistor and a lead from your capacitor.

2. RC low pass filter. Note: you could measure Vin and Vout by attaching the probes to
the corresponding bubbles. However typically the Wavetek is already connected to
the scope by a coax, so you may already have Vin on the scope. You may also attach
ground to the third bubble but that connection usually happens automatically (i.e.,
through the coaxial cable). Scopes always measure the voltage between the probe and
ground.

Use your RC combination to construct the low pass
filter shown. You will monitor the input to the filter
(Vin, supplied by the Wavetek) on ch 1 of the scope
and the output (Vout) on ch 2. Describe briefly how
this filter’s ‘gain’ (but here A < 1, so ‘attenuation’
might be a better word) changes as the frequency is
varied from 50 Hz to 1 MHz. Find the filter’s f−3dB

(i.e., the frequency at which Vout = Vin/
√
2 ).

Vout

Vin

Make a table of attenuation (Vout/Vin), dB, and f measured at frequencies of about
0.1, 0.2, 1, 2, 10, 20, and 100 times f−3dB. (Note that if, by adjusting the amplitude
on the Wavetek you make Vin = 1, you won’t need a calculator to find Vout/Vin.)

1“Bo–Dee” plots were popularized by Hendrik Wade Bode’s book Network Analysis and Feedback Am-

plifier Design 1945. Bode worked at Bell Labs and became head of the lab’s Mathematics Department in
1944.

2
Note: The general definition of f−3dB is not that the gain is .707, rather that the gain has changed

from some standard value by a factor of .707, i.e., the gain is 3 dB less than ‘usual’. In #2 the ‘usual’ A is
1, so f−3dB is where A = .707 In #3 the ‘usual’ A is .5, so f−3dB is where A = .354
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By hand, make a log-log graph of attenuation vs. f using the supplied paper. Check
that the filter’s Bode-plot slope for f > f−3dB is 6 dB per octave (or, equivalently, 20
dB per decade). Sketch (together) both scope traces at f−3dB. Does Vout lead or lag
Vin? (Note: a RC low pass filter is behind your scope’s HF Reject option; a RC high
pass filter is behind your scope’s Coupling◮AC option.)

3. LC Filter

I’ve constructed the beastie shown. (For the curious, it’s a 5-pole, low-pass But-
terworth filter in the π-configuration: see Appendix E of Horowitz and Hill if you
want more details.) At low frequencies the gain never exceeds about 0.5; therefore
f−3dB is defined as the frequency at which A is .707× its low frequency value, i.e.,
A = .707 × .5 = .354. Find and record this filter’s f−3dB. Using a sine wave as
input, record data of attenuation vs. frequency and plot them on log-log paper. Use
frequencies of about 0.01, 0.1, 0.2, 0.5, 1, 2, 4, and 8 times f−3dB. (At high frequencies
the attenuation is so large that Vout may be lost in the noise unless you increase Vin
to well above 1 V.) How does the steepness of this filter’s cut-off compare with that
of the simple RC filter? (I.e., compare the dB-per-octave falloff of this filter to the
simple RC filter.)

.01 µF .033 µF .01 µF

500 Ω 10 mH 10 mH

560 Ω

VoutVin

4. Tape your resistor+capacitor combination in your notebook.
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3: Bubble Chamber

Well, by 4 a.m. Saturday we had made a fundamental discovery that would
change the way cyclotrons were used. . . because of the properties of the magnetic
field near and beyond the rim of the cyclotron magnet, [the pion beam] curved
around machine in a tight beam. . . The only catch was the [ten-foot-thick] wall
of concrete between the machine and the experimental area. . . In a few days my
cloud chamber registered more pions than all the other labs in the world put
together. Each photograph (we took one each minute) had six to ten beautiful
tracks of pions. Every three or four photographs would show a kink in a pion
track as it disintegrated into a muon and “something else.”

Leon Lederman (1988 Nobel Laureate) The God Particle (1993) p. 223

Purpose

The purpose of this experiment is to determine the rest mass of the pion (mπ) and the rest
mass of the muon (mµ).

Introduction

Particle physics (a.k.a. high energy physics) is the division of physics which investigates
the behavior of particles involved in “high” energy collisions. (“High” here means energies
greater than those found in nuclear reactions, i.e., more than 100 MeV=0.1 GeV. The
highest energy particle accelerators available today produce collisions with energies of a few
million MeV = TeV.)

The first “new” particles discovered (circa 1940) by particle physicists were the pion (π)
and the muon (µ). In spite of roughly similar masses (near 100 MeV, compare: electron
mass = .511 MeV and proton mass = 938 MeV), these two particles have quite different
properties.

The muon is a relative of the electron (and hence is called a lepton). It comes in particle
(µ−) and anti-particle (µ+) versions and has spin 1

2 . Unlike the electron, the muon is
unstable. It decays into two neutrinos (ν) and an electron (or positron) after a mean life of

45
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2× 10−6 s:

µ+ −→ ν̄ + ν + e+ (3.1)

µ− −→ ν + ν̄ + e− (3.2)

The pion belongs to the class of particles called mesons. Unlike leptons, mesons interact
with protons and neutrons through an additional force called the strong nuclear force (a.k.a.,
color force). (Particles that can feel this force are called hadrons.) Unlike leptons, mesons
are known to be composite particles: each is made of a quark and an antiquark. The pion
comes in three versions: π+, π0, and π− and has spin 0. All the pions are unstable; the π+

decays after a mean life of 3× 10−8 s:

π+ −→ µ+ + ν. (3.3)

(The π0 has a slightly smaller mass and decays much faster than the π±. It is not seen in
this experiment.)

Particle Detection

Since the particles studied by particle physics are sub microscopic and decay “quickly”,
particle detection is a problem. Most existing particle detectors rely on the fact that as a
charged particle moves by an electron (e.g., an electron in an atom of the material through
which the charged particle is moving), the electron feels a net impulse. If the charged particle
comes close enough to the electron and/or is moving slowly enough (so the interaction is long
enough), the impulse on the electron will be sufficient to eject the electron from its atom,
producing a free electron and an ion. Thus a charged particle moving through material
leaves a trail of ions. This trail can be detected in many ways (e.g., by direct electronic
means as in a modern wire chamber or chemically as when the material is a photographic
plate or emulsion). In this experiment the ion trail is made visible by vapor bubbles which
are seeded by individual ions in boiling material (here liquid hydrogen). The bubbles are
large enough to be photographed whereas the ion trail itself is much too narrow.

Relativistic Kinematics

Recall the following from Modern Physics:

E = γmc2 (3.4)

T ≡ E −mc2 (3.5)

pc = γmvc = γmc2β = Eβ (3.6)

E2 − (pc)2 =
[

γmc2
]2 (

1− β2
)

=
[

mc2
]2

(3.7)

where:

β = v/c (3.8)

γ =
1

√

1− β2
(3.9)
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and v is the velocity of the particle with rest mass m, momentum p, total energy E and
kinetic energy T . Note that E, T , pc, and mc2 all have the dimensions of energy; it is
customary to express each in MeV and even say “the momentum of the particle is 5 MeV”
or “the mass of the particle is 938 MeV.” (Of course, technically the momentum of the
particle would be 5 MeV/c and the mass 938 MeV/c2. Basically what we are doing is
redefining “momentum” to be pc and “mass” to be mc2. Since the “c” has disappeared,
this re-naming is sometimes called “setting c = 1”.)

For future reference, note from Equation 3.6 that if β → 1, E ≈ pc and from Equation 3.7
that if m = 0, E = pc. Of course, massless particles (like light) must travel at the speed of
light (i.e., β = 1).

Momentum Measurements

Classically a charged particle (with mass m and charge q) moving through a magnetic field
~B has an acceleration, ~a, given by

m~a = q~v × ~B (3.10)

Because of the cross product, the acceleration is perpendicular to both ~v and ~B. Thus
there is zero acceleration in the direction of ~B, so v‖, the component of velocity parallel to
~B, is constant. On the other hand in the plane perpendicular to ~B, the acceleration and
the velocity are perpendicular resulting in centripetal (circular) motion. Thus the particle
moves in a circle of radius R even as it travels at constant speed in the direction of ~B.
The resulting motion is a helix (corkscrew). Using ⊥ to denote components in the plane
perpendicular to ~B, we have:

ma⊥ =
mv2⊥
R

= qv⊥B (3.11)

p⊥ = mv⊥ = qBR (3.12)

p⊥c = qcBR (3.13)

This last relationship continues to hold for relativistic particles.

SHOW: For a positron, Equation 3.13 means the momentum p⊥c (in MeV) can be calculated
as a simple product 3BR:

p⊥c (in MeV) = 3BR (3.14)

where B is in Tesla and R is in cm.1

In this experiment, positrons (and electrons) from muon decay circle in an applied magnetic
field. You will measure the radii of the positron orbits to determine positron p⊥. Since the
rest mass of the muon has been converted to kinetic energy of its decay products, positron
p⊥ depends on muon mass and measurement of p⊥ allows calculation of mµ.

1This is an example of a “calculator equation” where we seemingly ignore units. That is if B = 2 T
and R = 5 cm, this equation says p⊥c = 3× 2× 5 = 30 MeV, units seemingly just tacked onto the answer.
To ‘derive’ such an equation, you must demonstrate (once!) how the units work out. In particular, p⊥c —
which in MKS units in going to naturally come out in Joules — must be converted to the energy unit MeV.
You can start your derivation by assuming B = 1 T, R = 1 cm and calculate the resulting p⊥c in Joules
and then convert that to MeV. The conversion factor is 1 MeV=1.6022 × 10−13 J. Of course, you already
know 100 cm=1 m.
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Kinetic Energy Measurement

As stated above, a charged particle moving through a material leaves a trail of ions. The
energy needed to form these ions must come from the kinetic energy of the charged particle.
Thus, every cm of travel results in a kinetic energy loss. It can be shown (Bethe-Block)
that the decrease in kinetic energy depends on the inverse of the velocity squared:

dT

dx
= − 2.1ρ

β2
MeV/cm (3.15)

where ρ is the density of the material (ρ = .07 g/cm3 for liquid H2). This is the second
example of a “calculator equation”2.

A particle with some initial kinetic energy T0 will travel some definite distance, L, before
all of its kinetic energy is lost and it comes to rest. The relationship between T0 and L can
be determined from the energy loss per cm:

L =

∫ 0

T0

dx

dT
dT =

∫ T0

0

β2

2.1ρ
dT (3.16)

For particles moving much slower than the speed of light, Newton’s mechanics is a good
approximation: T = 1

2 mv
2 = 1

2 mc
2β2

L =
2

2.1mc2ρ

∫ T0

0
T dT =

T 2
0

2.1mc2ρ
(3.17)

so T0 ∝ L1/2.

In this experiment muons produced by pion decay travel a distance L before coming to rest.
You will measure the muon path length to determine muon T0. Since the kinetic energy
of the muon comes from the rest mass of the decaying pion, the mass of the pion can be
calculated from muon T0.

Perspective Effects

In real particle physics experiments, decay events are reconstructed in three dimensions.
However in this experiment you will measure apparent muon path lengths from photographs.
Because of perspective effects, typically the true path length (L) is longer that the appar-
ent (photographic) path length (L⊥), as the particle will generally be moving towards or
away from the camera in addition to sideways. In this experiment we need to “undo” the
perspective effect and determine L from the measurements of L⊥.

There are several ways this could be done. Perhaps the easiest would be to pick out the
longest L⊥, and argue that it is longest only because it is the most perpendicular, i.e.,

max ({L⊥}) ≈ L (3.18)

Essentially this is a bad idea because it makes use of only one collected data point (the
maximum L⊥). For example, it is likely you will make at least one misidentification or

2Thus if ρ = .1 g/cm3 and β = .5 we would conclude that dT/dx was −.84 MeV/cm.
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φ

actual path:
length L

apparent path
(from photo):
length L⊥

Actual Experiment Simplified Example
in just 2 dimensions

z

x

θ

actual path:
length L

apparent path
(from photo):
length L⊥

camera

Figure 3.1: This experiment uses photographs of particle paths in a bubble chamber. Two
angles (θ ∈ [0, 180◦], φ ∈ [0, 360◦]) are required to describe the orientation of the path in
three dimensional space. The photographic (apparent) path length, L⊥, is shorter than the
actual path length, L, (of course, if θ = 90◦, L⊥ = L). In general: L⊥ = L sin θ. The angle
φ just describes the orientation of the apparent path in the photograph. We can make an
easier-to-understand model of perspective effects by just dropping φ and considering a two
dimensional experiment. In this case to generate all possible orientations θ ∈ [0, 360◦].

.94 .83 .85 .40.49 .18 .97 .94 .28

θ

Figure 3.2: Nine randomly-oriented, fixed-length segments are placed on a plane and the
corresponding horizontal lengths L⊥ (dotted lines) are measured (results displayed below
the segment). The resulting data set {.94, .83, .85, .49, .40, .18, .97, .94, .28} of L⊥ can be an-
alyzed to yield the full segment length L. (The angle θ ∈ [0, 360◦] describes the orientation,
but it is not measured in this “experiment”: only L⊥ is measured.)

mismeasurement in your 60+ measurements. If the longest L⊥ happens to be a bad point,
the whole experiment is wrong. Additionally since L is the net result of interactions with
randomly placed electrons, L is not actually exactly constant. (That is, Equation 3.15 is
true only “on average”.) Paths that happen to avoid electrons are a bit longer. The L-T0
relationship is based on average slowdown; it should not be applied to one special path
length.

One way of using all the data is to note that randomly oriented, fixed-length paths will
produce a definite average L⊥ related to L. So by measuring the average L⊥ (which we will
denote with angle brackets: 〈L⊥〉), you can calculate the actual L.

It will be easier to explain this method if we drop a dimension and start by considering ran-
domly oriented, fixed-length segments in two dimensions. Figure 3.2 shows3 nine randomly
oriented segments in a plane with the corresponding measured L⊥. The different measured

3Note that if we applied Equation 3.18, we would conclude L = .97 with no estimate for the uncertainty
in this result (i.e., δL).
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L⊥ are a result of differing orientations of a fixed-length segment:

L⊥ = L| sin θ| (3.19)

From a sample of N measurements of the horizontal distance L⊥ (i.e., a data set of measured
L⊥: {xi} for i = 1, 2, . . . , N , with corresponding orientations {θi} with θi ∈ [0, 2π]), the
average L⊥ could be calculated

〈L⊥〉 =
1

N

N
∑

i=1

xi =
L

N

N
∑

i=1

| sin θi| (3.20)

The θi should be approximately evenly distributed with an average separation of ∆θ = 2π/N
(because there are N angles distributed throughout [0, 2π]). Thus, using a Riemann sum
approximation for an integral:

〈L⊥〉 =
L

N

N
∑

i=1

| sin θi| = L

N
∑

i=1

| sin θi|
(

∆θ

2π

)

(3.21)

≈ L

2π

∫ 2π

0
| sin θ| dθ = L

∫ 2π
0 | sin θ| dθ
∫ 2π
0 dθ

(3.22)

The above integral is easily evaluated:
∫ 2π

0
| sin θ| dθ = 2

∫ π

0
sin θ dθ = 2

[

− cos θ
]π

0
= 4 (3.23)

Thus we have the desired relationship between 〈L⊥〉 and L:

〈L⊥〉 = L
2

π
(3.24)

With the example data set we have: 〈L⊥〉 = 0.653 with standard deviation σL⊥
= 0.314.

Using the standard deviation of the mean we have:

0.65 ± .314√
10

= 0.65 ± .10 = L
2

π
(3.25)

1.03 ± .16 = L (3.26)

Note that our argument for finding averages is quite general, so if random values of x are
uniformly selected from the interval [a, b], the average value of any function of x, f(x), can
be calculated from:

〈f(x)〉 =
∫ b
a f(x) dx
∫ b
a dx

(3.27)

For the actual experiment, the path orientations have a uniform distribution in space. That
is, if all the paths originated from the same point, the path ends would uniformly populate
the surface of a sphere of radius L. The element of surface area of a sphere of radius L is:

L2 dΩ = L2 sin θ dθ dφ (3.28)

where Ω is called the solid angle and plays an analogous role to radian measure in a plane:

plane angle in radians =
arc length

R
(3.29)

solid angle in steradians =
sphere surface area

R2
(3.30)
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Thus the relationship between 〈L⊥〉 and L in three dimensions is:

〈L⊥〉 = L 〈sin θ〉 = L

∫

sin θ dΩ
∫

dΩ
= L

π

4
(3.31)

SHOW this result! Note: dΩ = sin θ dθ dφ and the range of the double integral is θ ∈ [0, π]
and φ ∈ [0, 2π]

Comment: The above discussion has been phrased in terms of position vectors, but it
applies as well to any vector. In particular, you will be measuring the perpendicular com-
ponent of momentum, p⊥, and need to deduce the actual momentum, p. Exactly as above,
if the particles have the same speed with direction uniformly distributed in space:

〈p⊥〉 = p
π

4
(3.32)

If the particles actually have differing speeds we can still conclude:

〈p⊥〉 = 〈p〉 π
4

(3.33)

Displaying Distributions

As discussed above, when finding L it is best to use the entire data set. Although the 〈L⊥〉
method uses all the data, it quickly reduces the whole data set to one number. Is there
some way of graphically displaying and using all the data? In particular, is there some way
of checking to see if the data have the expected distribution (i.e., the right proportion of
long and short L⊥s)?

Perhaps the easiest way to understand the idea of a distribution is to consider the idea of the
cumulative fraction function for some data set: {xi}, for i = 1, 2, . . . , N . The cumulative
fraction function4, c(x), reports the fraction of the data set {xi} that is less than or equal
to x. Obviously if a < min ({xi}), c(a) = 0; if b ≥ max ({xi}), c(b) = 1; and if c(x) = .5
then x is the median (i.e., middle) data point. In the 2d example data set, c(.60) = 4/9,
because four of the nine data points are smaller than .6. Similarly c(.84) = 5/9. Every time
x increases past one of the xi, c(x) has a jump. See Figure 3.3 for a plot of this function.

The function c(x) depends on the data set, so if the experiment is repeated generating a
new data set {xi}, a new function c(x) is also generated. The new c(x) should be slightly
different, but generally similar to the old c(x). If the data set is sufficiently large, the new
and old c(x) will be quite similar and both c(x) would approximate the function ĉ(x), the
cumulative fraction function that would be generated from an infinite-sized data set5. How
can ĉ(x) be best approximated from one finite-sized data set {xi}? To answer this question
it will be convenient to consider the data set {xi} already sorted so x1 is the minimum and
xN is the maximum. Thus our example data set:

{.94, .83, .85, .49, .40, .18, .97, .94, .28} (3.34)

4The cumulative fraction function is also known as the empirical distribution function, and is closely
related to percentiles and order statistics.

5The usual name for ĉ(x) is the distribution function.
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Figure 3.3: The distribution of data set: {.94, .83, .85, .49, .40, .18, .97, .94, .28} of Figure 3.2
(nine randomly oriented segments) displayed as a cumulative fraction.

becomes:

{.18, .28, .40, .49, .83, .85, .94, .94, .97} (3.35)

As defined above, c(x) is given by:

c(x) =
i

N
where i is such that: xi ≤ x < xi+1 (3.36)

That is to determine c(x) for some x, we see how far down the sorted list we must travel to
find the spot where x fits between two adjacent data points: xi ≤ x < xi+1. Clearly there
are a total of i data points less than or equal to x (out of a total of N), so c(x) = i/N . If x
happens to equal one of the data points, things are a bit undefined because c(x) has a jump
discontinuity at each xi. It turns out that the best estimate for ĉ at these discontinuities is:

ĉ(xi) =
i

N + 1
≡ αi (3.37)

Of course this estimate can be wrong; it has an uncertainty of

σ =

√

αi(1− αi)

N + 2
(3.38)

See Figure 3.4 for a comparison of the estimated ĉ(xi) (called the percentile) and the
cumulative fraction function. (The mathematics of these results is covered under the topic
“order statistics” or “nonparametric methods” in advanced statistics books.)

Your experimental estimate of ĉ should be compared to the theoretically expected ĉ. The
example data set was generated from randomly oriented line segments in a plane. As shown
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Figure 3.4: The cumulative fraction function for the example data set is plotted along with
the data points for the percentile estimate of the distribution function ĉ(x).

θ

Figure 3.5: A particular line segment is displayed along with the measured L⊥ (dotted line).
What fraction of randomly oriented segments would have a L⊥ smaller than this particular
segment? The darkly shaded part of the circle shows possible locations for these small L⊥
segments. The fraction of such small L⊥ segments should be the same as the dark fraction
of the circle: 4θ/2π.
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in Figure 3.5, it is expected that the fraction of a data set less than some particular value
of L⊥ is:

ĉ(L⊥) =
4θ

2π
where: θ = arcsin(L⊥/L) (3.39)

=
2

π
arcsin(L⊥/L) (3.40)

Warning: the above function is for the 2-d example, not your real 3-d data!

Our formula for ĉ involves the unknown parameter L; we adjust this parameter to achieve
the best possible fit to our experimental estimate for ĉ. Using the program fit:

tkirkman@bardeen 7% fit

* set f(x)=2*asin(x/k1)/pi

* read file cf.L.dat

* set k1=1

* fit

Enter list of Ks to vary, e.g. K1-K3,K5 k1

FIT finished with change in chi-square= 5.4810762E-02

3 iterations used

REDUCED chi-squared= 0.2289333 chi-squared= 1.831467

K1= 0.9922597

Display covariance/curvature matrices? No, Screen, File [N,S,F] s

...

COVARIANCE MATRIX:

0.65E-03

CURVATURE MATRIX:

0.15E+04

Using the covariance matrix to determine errors6, we conclude k1 = 0.992 ± .025. This
reported random error is about 1

6 that obtained above using 〈L⊥〉.

SHOW: Derive yourself the theoretical function ĉ(L⊥) for line segments in space. Hint:
Begin by noting that if the segments shared a common origin, the segment ends would
uniformly populate the surface of a sphere of radius L. Segments with measured L⊥ less
than some particular value would lie on a spherical cap, the three dimensional version of
arc caps displayed in Figure 3.5. The ratio of the area of these caps to the total surface
area of the sphere gives the expected value for ĉ. You will need to calculate the area of a
spherical cap by integration.

The above discussion has focused on path lengths as that is the quantity measured in pion
decay. In muon decay, the radius of positron orbits in the applied magnetic field is measured.
Weinberg-Salam theory provides a complete description of the decay process, including the
distribution of positron momentum (which in turn determines the radius of positron orbits

6Reference 2, Press et al., says usually error estimates should be based on the square root of the diagonal
elements of the covariance matrix
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Figure 3.6: The theoretical distribution function (Equation 3.40) fit to the “experimental”
data points derived (Equations 3.37 & 3.38) from the example data set. As a result of the
fit we estimate: L = 0.992 ± .025.

R). Kirkman has shown that the the Rs should be distributed according to

ĉ(R) =

(

3

2
u2 − 1

)

√

1− u2 + 1− 1

2
u4 log

((

1 +
√

1− u2
)

/u
)

(3.41)

where u = R/Rm, and Rm, the maximum value of R, is the value of R that corresponds
to p⊥c = mµc

2/2. The adjustable parameter Rm (of course called k1 in fit), can be
adjusted to give the best possible fit to the experimental distribution. From Rm, mµ can
be determined.

Biases and Robust Estimation

The bane of every particle physics experiment is bias. Biases are data collection techniques
that produce nonrepresentative data. For example, short L⊥ are harder to notice than long
L⊥, and thus long L⊥ tend to be over represented in the data sample, producing a high
〈L⊥〉. Use of the cumulative fraction function allows this biases to be detected. In addition
to biases, the cumulative fraction function allows you to detect likely mistakes: for example,
particle path lengths that are extraordinary given the entire data set.

The detection of a likely mistake suggests corrective actions like removing the “bad” point.
You should almost never do this! (You will find a chapter in Taylor on this “awkward” and
“controversial” problem.) A better option is to use analysis methods that are “robust”, i.e.,
that are insensitive to individual “bad” points.7 Imagine we modify our example data set

7Removing a data point is a lie. A more subtle sort of lie comes from the existence of choice of methods.
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by adding a “bad” point: L⊥ = 2:

{.18, .28, .40, .49, .83, .85, .94, .94, .97, 2.00} (3.42)

Adding this outlying8 data point totally messes up the max({L⊥}) method (the least robust
method). Since it increases both the mean and the standard deviation, the estimated L
based on the 〈L⊥〉 method shifts from 1.03 ± .16 to 1.24 ± .26.

Changing the number of data points requires recalculating the estimated distribution func-
tion for every point (because the value of ĉ depends on the set size N). If we carry through
the total analysis with our enlarged data set we find the fit L shifts from 0.992 ± .025 to
1.05 ± .05. We can conclude that the cumulative fraction method is less sensitive to bad
data than the average method.9

Unconscious (uncontrolled) biases produce tainted data which can be rescued in part by
robust estimation. Once bias is recognized the experiment can be rearranged to adjust
for its effects. This requires that the bias be exactly reproducible. For example, short
apparent muon paths (paths mostly towards or away from the camera) are inconspicuous
and hence more likely to be missed on some occasions. One solution is formalize this bias
and intentionally ignore all photographic paths shorter than say .3 cm long (about 5% of
the data). This cut (formalized noncollection of data), can be included in the theoretical
distribution function so it will not affect parameter estimation.

Experimental Arrangement

Our bubble chamber photographs were taken using the 385 MeV proton accelerator at
Nevis Lab which is a part of Columbia University. A pion beam was produced by colliding
accelerated protons with a copper target. The pion beam was directed through an absorber
to slow the pions so that a sizable fraction of the pions would come to rest in the adjacent
bubble chamber. See Figure 3.7. The path of charged particles from the pion decay (π →
µ → e) as recorded by a nearby camera, encodes the information needed to calculate mπ

and mµ. Apparent muon path length, L⊥, will allow you to determine the actual muon
path length L, from which in initial muon kinetic energy T0 can be determined. A magnetic
field (B = .88 T, directed toward the camera) bends the path of all charged particles into
helices; but the effect is most visible with the low mass electrons. The radius of the electron
helix determines (Equation 3.14) the electron’s p⊥c. From the distribution of electron p⊥c,
you can determine both 〈pc〉 and the maximum pc, from which mµ can be determined.

Figure 3.8 shows an idealized decay sequence as might be recorded in a bubble chamber

Clearly, you can analyze the data several different ways, and then present only the method that produces
the answer you want. Darrell Huff’s book How to Lie with Statistics (Norton, 1954) can help you if that is
your goal. I probably don’t need to remind you that schools with “Saint” in their name do not recommend
this course of action. Choice and ethics are interlocking concepts.

8While not exactly relevant, this data point is 2.34×σ above the mean and hence an outlier by Chauvenet’s
criterion (see Reference 4, Taylor). It is also an outlier by Tukey’s criterion (see Reference 3, Hogg & Tanis).

9Do note that both results remain consistent with the intended value of 1.00. Also note that the median
could have provided a more robust alternative to the average. However, that would have required a discussion
of the uncertainty in the median, which is beyond the intended aims of this lab. In this lab—and in most
any experiment—there are many possible ways to analyze the data. Choice of method often involves art
and ethics.



Bubble Chamber 57

9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
99999996"

12"

9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999

9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999

9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999

40"

00000000000000
00000000000000
00000000000000
00000000000000
00000000000000
00000000000000
00000000000000
00000000000000
00000000000000

Pion Beam

Absorber

Magnet Coil

Camera
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Figure 3.7: A pion bean is slowed by an absorber so the pions are likely come to rest inside
a liquid hydrogen bubble chamber. The path of charged particles from the pion decay
(π → µ → e) is recorded by a nearby camera. (Of course, the uncharged neutrinos from
the decay leave no ion trail, and hence no bubbles grow to mark their path.) A magnetic
field (B = .88 T, directed toward the camera) produced by the current in the coil, bends
the path of all charged particles into helices, but the effect is most visible with the low
mass electrons. The radius of the helix, as recorded by the camera, can be related to the
particle’s p⊥. Since the muon decays into three particles, allowing varying distribution of
energy, the electron’s momentum can vary from 0 up to a maximum of mµc/2. Since the
pion decays into just two particles, there is only one way to distribute the released energy
so the muon’s initial kinetic energy is determined uniquely which produces a fixed stopping
distance L. (Of course, the apparent muon path length, L⊥, recorded by the camera will
vary.)



58 Bubble Chamber

incoming
pion

stationary
pion decays

muon
path

stationary
muon decays

electron
path

µ−

ν

ν

e−
π−

ν

key

magnetic field
points out of pageB

→

Figure 3.8: A typical decay process as recorded in a bubble chamber photograph. A pion
(π−) slows and comes to rest inside the bubble chamber. A short time later it decays into
a muon and an antineutrino (π− → µ− + ν̄). A kink in the path marks the decay location.
The muon is in turn slowed and comes to rest after traveling a short distance. A short
time later the muon decays into an electron and two neutrinos (µ− → e− + ν̄ + ν). The
high speed electron leaves a sparse track in accord with the Bethe-Block Equation (3.15)
(reduced energy loss due to large β means fewer ions produced and hence fewer bubbles).
You will be measuring apparent muon path lengths, L⊥, and electron helix radii R.

photo. The paths of interest start on the left (pions from the accelerator), have a short
(∼1 cm) kink (muon), connecting to a sparse loop (electron).

Procedure

Measurement of Rs and L⊥s is computerized. (Indeed almost all of your data collection
this semester will be computerized.) As I’m sure you know, while computers can be use-
ful devices, they seemingly have a knack for unintended/unexpected disasters, which are
called ‘user error’. Thus the most important lesson of computer use is: GIGO (‘Garbage
In; Garbage Out’10) — a computer’s output must be considered unreliable until, at the
very least, you know the limitations/uncertainties in the input data producing that output.
In this lab you will be using a CalComp 2500 digitizing tablet to measure distances. The
process seems simple (aligning a point between crosshairs and clicking to take the data-
point) but involves problem of definition errors (including systematic biases, see page 13) in
addition to more familiar device limitations (random and calibration errors). To have some
justified confidence in this process, you must measure a known and see what the computer
reports (‘trust, but verify’). I have provided you with a simulated bubble chamber photo
in which all the path lengths are 1 cm and all the curvatures are 20 cm. (If you don’t trust
this fiducial—and you might not since it depends on the dimensional stability of printers
and paper—you can measure the ‘tracks’ with an instrument you do trust.) Begin by log-
ging into your linux account using the Visual 603 terminal with attached CalComp 2500

10Sometimes this acronym is reported as ‘Garbage In, Gospel Out’ stressing many people’s (mistaken)
faith in computer output.
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digitizer, and running the program bubbleCAL:

tkirkman@linphys8 1% bubbleCAL

The following directions are displayed:

The general procedure will be to place the cursor crosshair at

the needed place and press a cursor button to digitize. Press

cursor button "0" when obtaining muon path lengths (digitize

beginning and end of track); press cursor button "1" when obtaining

electron radii of curvature (digitize three points on curve, from

which the computer can figure R); press cursor button "2" to cancel

an in-progress data point or clear error; press cursor button "3" to

remove the last data point of the presently selected type. Additional

data points may be removed by number when done. Digitizer will beep

between data points. Hit ^D (control D) on keyboard when done.

Files containing your data (unsorted) will be created: Lcal.DAT & Rcal.DAT.

THIS PROGRAM IS FOR CALIBRATION/TESTING NOT DATA COLLECTION

With the simulated bubble chamber photo taped in place on the digitizer, check some long
distances (> 10 cm) on the scales. Then measure 16 path lengths and 16 curvatures. Record
the data reported by the program (means, standard deviations, 95% confidence intervals,
etc.). Does the probable range for each mean include the known value? (If not discuss the
problem with Dr. Kirkman.) Note that if you took more data points, the probable range for
the mean would become increasingly small and eventually you would detect a systematic
error limiting the ultimate accuracy of the device.

The program bubble works very much like bubbleCAL, except in the end it will produce
files containing the cumulative fraction of L⊥ (cf.L.dat) and R (cf.R.dat). Please do not
deface the bubble chamber photos! Lightly tape each bubble chamber photograph to the
digitizer to keep the photo from moving as you collect data. Collect ∼ 64 L⊥s and ∼ 64
Rs. (This will require scanning about 20 bubble chamber photos.)

Common Mistakes: Collecting the radius of pion paths rather than electron paths. (If
you’ve forgotten how to tell them apart, you should probably ask!) Collecting a biased
sample of L⊥: just the big obvious ones and skipping the ones (∼5%!) shorter than .3 cm.

The program will make four files: cf.R.dat contains the usual three columns: R, the
percentile estimate ĉ(R) calculated from your data, and the error in the estimate, cf.L.dat
similarly contains the sorted L⊥, estimated c(L⊥) and error, L.DAT and R.DAT contain the
(unsorted) raw data.

Use the web11 or gnumeric (Linux spreadsheet) to calculate 〈L⊥〉 and 〈R〉 and their standard
deviations. Note that the raw data files (L.DAT and R.DAT) can be used to transfer the data
to these applications.

Use fit (for a tutorial and introductory video see page 189; see page 177 for a command
summary) to fit each dataset (cf.R.dat & cf.L.dat) to the appropriate theoretical distri-
bution function. Produce a hardcopy of your fit results to include in your notebook. Use

11http://www.physics.csbsju.edu/stats/cstats paste form.html
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plot (see page 183 for a command summary) to produce a hardcopy plot of your data with
fitted curve to include in your notebook. (Copy and paste is the easiest way to accurately
transfer K1 between fit and plot.)

The formula for ĉ(R) (Eq. 3.41) is a bit tricky to type in, so I’ve provided you with a
shortcut: ĉ(R) will be automatically entered as f(x) into fit or plot if you type:

* @cr.fun

In this f(x), K1 holds the parameter Rm, x is a measured R, and f(x) is the expected value
ĉ(R).

Calculation of mµ

Since energy is conserved, the rest energy of the muon must end up in its decay products:

Eµ = mµc
2 = Ee + Eν + Eν̄ (3.43)

where Eµ, Ee, Eν , Eν̄ are respectively the total energy of the muon, electron, neutrino, and
antineutrino.

You should expect that the rest energy of the muon would, on average, be evenly divided
between the three particles. Thus

〈Ee〉 ≈ 〈Eν〉 ≈ 〈Eν̄〉 ≈
1

3
mµc

2 (3.44)

In fact, the Weinberg-Salam theory of weak decays predicts

〈Ee〉 = .35mµc
2 (3.45)

Since electrons with that much energy have β = .9996, to a good approximation Ee = pec.
Thus

.35mµc
2 = 〈Ee〉 = 〈pec〉 =

4

π
〈pe⊥c〉 (3.46)

so you will find mµc
2 from 〈pe⊥c〉 (which, in turn, is found from 〈R〉).

Additionally, you will calculate mµc
2 from your fit value of Rm (using your data and the

theoretical expression for ĉ(R), Equation 3.41). From the above discussion you already
know

3BRm = p⊥c = mµc
2/2 (3.47)

allowing you to determine mµc
2 from B and Rm.

Recall: Standard deviation of the mean is used for errors in averages (see Taylor). The
square root of the diagonal elements of the covariance matrix determine the errors in fit

parameters (See Press, et al.).
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Calculation of mπ

The pion mass can be determined from the muon path length L: From L you can find
the initial kinetic energy of the muon (T0); adding the rest energy of the muon (use an
authoritative high-accuracy value formµc

2 and cite source) gives you the total muon energy,
Eµ.

Eµ = T0 +mµc
2 (3.48)

From momentum conservation and the fact the neutrinos have nearly zero rest mass and
hence travel at the speed of light, you can show

Eν = pνc = pµc =
[

E2
µ − (mµc

2)2
]1/2

(3.49)

Finally, energy conservation of the decaying pion requires

mπc
2 = Eµ + Eν = Eµ +

[

E2
µ − (mµc

2)2
]1/2

(3.50)

from which mπc
2 can be calculated.

We have discussed two ways of determining L (using Equation 3.31 with a measured value
for 〈L⊥〉 and by fitting the theoretical ĉ(L⊥) curve to your experimental data), so you will
produce two values for mπ.

Note: The error in the authoriatative high-accuracy value of mµ used to calculate mπ

should be small enough to ignore, so the error in mπc
2 (δmπc

2) is due to the uncertainty in
L (given by fit) or the uncertainty in 〈L⊥〉 (given by the standard deviation of the mean).

To calculate δmπc
2, find

∂mπc
2

∂Eµ
and δEµ = δT0 and apply Eq. E.9 (or E.12) in the form:

δmπc
2 =

∂mπc
2

∂Eµ
δEµ (3.51)

Some Words About Errors

We noted above that different analysis methods yield different statistical error estimates.
And robust methods that produce smaller uncertainties are preferred. But no amount of
statistical gamesmanship can erase a systematic error in the original measurements so there
is little point in reducing statistical errors once systematic errors dominate. Said differently:
the aim is to understand the systematic errors and then reduce the statistical errors until
they become irrelevant.

In this experiment one finds potential systematic errors in constants given without error
(B = .88 T, ρ = .07 g/cm3, the “2.1” in the Bethe-Block Equation 3.15) and theoretical
simplifications (the bubble chamber’s 6” thickness means paths closer to the camera are
enlarged in photographs compared to those further from the camera, ‘straggling’ where some
muons would have stopping distances a bit more or less than that calculated from the Bethe-
Block Equation, varying magnetic field within the bubble chamber, expansion/contraction
of the photographs due varying to humidity).
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mµc
2 mπc

2

(MeV) (MeV)

113 ±1 140.36 ±.02
109 140.10
106 139.61
102 139.98
103 140.17
110 140.15
112 140.26
114 139.55
114 139.92
105 140.09
97 140.12
109 140.24
109 140.49
106 140.24
112 140.21
100 140.48
99 140.24
99 140.44
106 139.81
105 140.23

mean: 106.5 140.13
standard deviation: 5 0.26

discrepancy (mean−known): 1 0.56

Table 3.1: Three years of student results (same photos, same apparatus) for the muon mass
(mµc

2 in MeV) and the pion mass (mπc
2 in MeV) as determined using a fit to the appro-

priate cumulative fraction function. Values using averages were similar (if slightly more
discrepant) but with much larger errors. The error listed here is just typical: clearly each
experiment will report both differing errors and values. Note particularly the failure of
the reported error to accurately predict the actual variation (i.e., reported errors smaller
than standard deviation of masses, e.g., ±.02 vs. 0.26). Almost all of these results would
declare the actual value wrong. Evidently there are unrecognized sources of random varia-
tion which result in a miss estimation of random error. In the case of mπc

2 the discrepancy
is several times the SDOM; systematic error is the likely cause. (Note that the fit-reported
error in L is usually unbelievably small.)
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The error in L determined from the fit to the theoretical cumulative fraction function is often
obviously too-small12. The covariance matrix typically suggests an L error of about .001 cm.
Whereas bubbleCAL typically suggests systematic errors in L measurements greater than
.01 cm. Further the likely error in the ρ and 2.1 that occur together with L in Eq. 3.17,
would suggest L accuracy below 5% is irrelevant.

It is helpful to review multiple results collected over several years given in Table 3.1. The
mean discrepancy is not too worrisome: a few percent change in the given constants would
erase that difference. Of greater concern is large mismatch between the calculated statistical
error and the standard deviation upon repeated measurement with identical equipment
(but different data collectors). I’m sure part of this variation is due to ‘personal placement
decisions’ detected by bubbleCAL, but additionally varying ability to notice short L⊥ will
create varying results. (Most student cumulative fraction plots show a deficit of short L⊥.)
In any case we see here an example of calculated statistical errors reported way below other
uncontrolled uncertainties. The student results look much like the embarrassing results
presented in Figure 1 on page 10.

OK, each student’s errors are too small (yours will almost certainly also be too small).
However, given this table of experiment repeats, would it be fair to report the standard
deviation of the mean as the uncertainty in, say mπc

2? Numerically you can see that would
be disastrous (as the SDOM is about 1

10 the discrepancy). Since we are attributing the
deviation to different observers (since the equipment and photos are the same) and we have
no right to suggest that the average observer is the perfect observer (indeed one might say
the perfect observer is exceptional), the answer must be “No”. In this experiment I guess
that in addition to the consistent but ‘wrong’ ‘personal placement decisions’ that caused
each student’s estimated error to be much smaller than error estimated by repeats, there is
also systematic error in those ‘given constants’ that has pushed our results a bit too high.
We know that there is systematic error because we know the ‘actual’ values, but the original
workers had no access to future data.

In short you can only use the SDOM as the error if you are convinced the deviation is
caused by a balanced (exactly as much high as low) process. (And that implies you have a
good idea of what is causing the deviations.)

In our experiment, the actual experimental error is available to us (since mµ and mπ have
since been measured to high accuracy), but how can current investigators estimate these
errors? A short answer to this question is calibration: “placing” known pathlengths and
radii into the bubble chamber, and comparing those known values to the measured results.
Indeed, experiments exactly like this lab are used to calibrate the detection systems in
modern experiments.

Histograms

The cumulative fraction function described above is generally used when fewer then a thou-
sand data points are available. Histograms are a more familiar way of displaying distribu-
tions. Histograms are made by dividing the range of the data set {xi} into several (usually

12The reason too-small errors are found when fitting to cumulative fraction functions may be found in
Reference 2, Press, et al.
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equal-sized) sub intervals call bins. The data are sorted into these bins, and the number
of data points in each bin is recorded as the y value for the average x value of the bin.
(According to Poisson statistics, the uncertainty in y would be the square root of y.) The
resulting plot is closely related to dc/dx (also known as the probability density function).
Histograms are valued because they immediately show which bins are highly populated,
i.e., what values of x occur frequently.

Report Checklist

1. Write an introductory paragraph describing the basic physics behind this experiment.
Why did different decays of pions result in different L⊥? Why did different decays
of muons result in different R? What is the relationship between L⊥ and more usual
variables of motion? What is the relationship between R and more usual variables of
motion? (This manual has many pages on these topics; your job is condense this into
a few sentences and no equations.)

2. Book values for muon (µ±) and charged pion (π±) ‘mass’ in MeV. Find (and cite) a
source that reports at least five significant digits.

3. Derivations:

(a) Equation 3.14

(b) Equation 3.31

(c) Area of a spherical cap

(d) Use above to derive ĉ(L⊥)

4. Read: http://www.physics.csbsju.edu/stats/display.distribution.html
Let’s call the last two digits of your CSB/SJU ID number: XY.

(a) Go to the web site: http://www.physics.csbsju.edu/370/data/ and select
the file: 4 X.dat. This file contains 4 random data points. By hand draw in
your notebook the cumulative fraction step-curve for this dataset along with the
percentile values with errors. The result should be similar to Figure 3.4. Show
your work!

(b) From the same web site, select the file: 1000 Y.dat (or 1000 Yw.dat with the
same data in multiple columns). Using ∼10 bins by hand draw the histogram for
this dataset including error bars. Show your work! Copy & paste the 1000 data
points into the web13 site and produce a hardcopy percentile plot. Comment on
the relationship between features in your histogram and features in the percentile
plot. E.g., a peak in the histogram corresponds to what in the percentile plot?

(Note: I’m requesting individual work—rather than partnered work—to check that
everyone understands these plots. Do feel free to help your partner succeed, but don’t
just do the work for him/her.)

5. Results (copied from the screen) and conclusions from use of the program bubbleCAL:
Estimate the random error in a L and R measurement (think σ). Was systematic
error detected? (Is the actual value outside the reported 95% confidence limits?) If

13http://www.physics.csbsju.edu/stats/cstats paste form.html
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so, how much? If not, how large could the systematic have been and nevertheless go
undetected? (This is called an upper limit on the error.) Compare your systematic
error (detected or upper limit) in L and R to the fit supplied estimates of random
error in L and Rm for the actual experiment. Which is (or might be) more significant:
random or systematic error?

This is a good time to make a distinction between accuracy and precision. Accuracy
is the deviation between the actual value and our experimentally determined value,
whereas precision is our estimate of the error in our experimentally determined value
(typically based on a standard deviation or a computer reported parameter error).
(This distinction between accuracy and precision is very commonly ignored since
“accuracy” requires knowing the actual value (which is usually impossible), so we
commonly are forced to use our estimate of precision as our estimate of accuracy.
However, in this lab we do have authoritative values which we assume are accurate.)
Inaccurate results (actual value outside your reported precision) are usually the result
of systematic errors.

6. Report value (and error) for 〈R〉 and 〈L⊥〉. (An easy way to do this is to open the files
cf.R.dat and cf.L.dat with a spreadsheet like gnumeric and use the spreadsheet
statistical functions.) Report how you calculated the errors. SDOM?

7. Two values (with errors) for mµc
2 (in MeV): one based on 〈R〉 (see Eq. 3.46) and the

other on a fit to Equation 3.41. Hardcopies of the fit results and a plot of the
best-fit curve with your data points. (The plot is analogous to Figure 3.6.) Note: fit
is described in Appendix A; plot is described in Appendix B. But perhaps the easiest
starting point for these programs is the video that goes along with Appendix C.

8. Two values (with errors) for mπc
2 (in MeV): one based on L found from 〈L⊥〉 using

Eq. 3.31 and the other based on L found from the fit to the equation for ĉ(L⊥) you
derived in 3(d) above. Hardcopies of the fit results and a plot of the best-fit curve
with your data points.

9. A comparison of the mass values you reported above (6 & 7) and the “known” values
cited above in 2. (Make a nice table.)

10. Typically in this lab, the error estimates based on fits that are much smaller than the
errors based on averages. Are these error estimates accurate? (If your masses (with
errors) are inconsistent with authoritative values, it is quite likely that something
is wrong with your error estimates.) Explain how your error estimates could be
improved. (For example, sometimes error estimates can be improved (and reduced)
by simply taking more data. In other situations, improved errors come from proper
consideration of systematic errors and result in larger estimates of error.) A few
words about statistical and systematic errors are probably required; you might consult
Chapter 0 if nothing occurs to you.
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4: Photometry

The mathematical thermology created by Fourier may tempt us to hope that. . . we
may in time ascertain the mean temperature of the heavenly bodies: but I regard
this order of facts as forever excluded from our recognition.

Auguste Comte Cours de la Philosophie Positive1 (1835)

. . . within a comparatively few years, a new branch of astronomy has arisen
which studies the sun, moon, and stars for what they are in themselves and in
relation to ourselves.

Samuel Pierpont Langley The New Astronomy (1888)

Purpose

In 1835 the French philosopher Auguste Comte noted that since we know stars only by
their light (and cannot take bits of stars into the laboratory), our knowledge of stars would
be forever limited essentially to location. Fifty years later astrophysics—the study of the
physics of stars—was beginning, and the first measurements of the Sun’s temperature and
composition were being made. Evidently, careful measurement of starlight (photometry)
allows the intrinsic properties of stars to be determined. In this lab you will use broadband
photometry to measure the temperature of stars.

Introduction

We begin our study of stars with blackbody radiation, which you studied in Modern Physics
and you will yourself measure in the Thermionic Emission lab (p. 121). The light produced
by a hot object is akin to audio noise: in both cases a random process produces a simul-
taneous superposition of a wide distribution of wavelengths. In his Opticks, Newton noted
certain systematic dependencies in the light emitted by incandescent objects and suggested
something fundamental was behind the process2. Apparently the light produced by an in-
candescent object is fundamentally related to its temperature not its material composition.
In 1879 Joseph Stefan proposed that every object emits light energy at the rate (power in

1http://socserv2.mcmaster.ca/~econ/ugcm/3ll3/comte/ provides this as an etext translated and
edited by Harriet Martineau.

2Query 8: Do not all fix’d Bodies, when heated beyond a certain degree, emit Light and shine. . .
Query 11:. . . And are not the Sun and fix’d Stars great Earths vehemently hot. . .

67
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watts):
P = ǫTσT

4A (4.1)

where σ is the Stefan-Boltzmann3 constant, T is the absolute temperature of the body, A
is the surface area of the body, and ǫT is the total emissivity.

Experimentally it was found that the wavelength distribution of the light from hot objects
was broadly similar to the Maxwell-Boltzmann speed distribution: a bell-shaped curve in
which the location of the peak (i.e., the most common wavelength) depended on tempera-
ture. In 1893 Wilhelm Wien4 concluded that the wavelength of this peak must be inversely
proportional to temperature. Experiment confirmed that the wavelength of this peak was
given by:

λmax =
2898 µm ·K

T
(4.2)

Together the Stefan-Boltzmann and Wien displacement laws—both the results of classical
physics—explain much of what is commonly observed in hot objects. At room tempera-
ture objects do not appear to be a source of light: they appear dark (unless externally
illuminated). This is a result both of the small rate of emission given by Stefan-Boltzmann
and (from Wien) for T = 300 K, we find λmax ∼ 10 µm, that is the wavelengths typically
emitted are well outside the range of light that can be detected by the eye5. On the other
hand for an object like the Sun: T ≈ 6000 K, so λmax ∼ 0.5 µm — right in the middle of
of the visible range.

Our ‘spherical cow’ model6 of a star is an incandescent ball (radius R) of gas shining as a
blackbody. Thus the total power output of a star (called the luminosity7) is

L = σT 4 4πR2 (4.3)

The equation for the exact distribution of photon wavelengths produced by a blackbody
was actively researched with erroneous equations produced by Wien and Rayleigh & Jeans.
In 1900 Max Planck8 published his derivation of the wavelength distribution of light from
a blackbody. However before we can discuss his result we must explain what precisely is
meant by ‘wavelength distribution’.

In Physics 211 you learned about the speed distribution9 of the molecules in a gas: a
bell-shaped curve that shows that slow molecules are rare and supersonic molecules are

3In 1879 Jožef Stefan (1835–93) proposed the law based on experimental measurements; five years later
Ludwig Boltzmann (1844–1906) derived the result from fundamental thermodynamics. Today the result is
known as the Stefan-Boltzmann Law.

4Wilhelm Wien (1864–1928) German physicist, 1911 Nobel Prize in Physics
5The human eye can detect light with a wavelength in the range 0.4 µm (violet) to 0.7 µm (red).
6This model of a star works best with stars similar in temperature to the Sun, but every star’s light is

considerably modified by absorption as it travels through the star’s atmosphere. In hot stars, UV wavelengths
that can photoionize hydrogen (H(n = 2)+γ → H++e−) are highly attenuated producing the Balmer jump.
The spectra of cool stars shows broad absorption bands due to molecules.
http://www.jb.man.ac.uk/distance/life/sample/java/spectype/specplot.htm is an applet allowing a
comparison of blackbody light to actual star light.

7The MKS unit for luminosity is watt, but the numbers are so large that it is usually expressed as a
multiple (or fraction) of the Sun’s luminosity (a.k.a., solar luminosity) L⊙ = 3.846 × 1026 W.

8Max Planck (1858–1947) German physicist, 1918 Nobel Prize in Physics
9Derived by James Clerk Maxwell (1831–1879); Ludwig Boltzmann (1844–1906) provided a firm founda-

tion for the result using statistical mechanics. Today the result is generally known as the Maxwell-Boltzmann
distribution.
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Figure 4.1: The distribution of the light emitted by a blackbody plotted as a function of
wavelength. Hotter objects emit much more light than cool ones, particularly at the shorter
wavelengths.

rare, whereas a molecular kinetic energy near 3
2kT is common. ‘Speed probability’ is a

problematic concept. For example the probability that a molecule has a speed of exactly
π m/s (or any other real number) must be essentially zero10 (as an infinite number of digits
must match, but there are only a finite [but huge] number of molecules). Probability density
provides a meaningful context to talk about speed distribution: determine the fraction of
molecules (‘hits’) that have speed in an interval (bin) (v−∆v/2, v+∆v/2) for various speeds
v. (Here the bin is centered on the speed v and has bin-size ∆v.) Clearly the number of
hits in a bin depends on the bin-size (or range), but you should expect that the hit density
(number of hits divided by the bin-size) should be approximately independent of the bin-
size. A plot of fraction-per-bin-size vs. bin center provides the usual bell-shaped curve.
Bins centered on both slow and supersonic speeds include few molecules whereas bins that
correspond to molecular kinetic energy near 3

2kT include a large fraction of molecules.

In a similar way we can sort the light by wavelength into a sequence of wavelength intervals
(bins), and calculate the total light energy per bin-size. For example, if there were11 a total
of 2 J of light energy (about 5×1018 photons) with wavelengths in the interval (.50, .51) µm
we would say the intensity of light at λ = .505 µm was about 200 J/µm. In the case of
the thermal radiation continuously emitted from the surface of a body, we are interested in
the rate of energy emission per area of the body, with units (W/m2)/µm. This quantity is
called the monochromatic flux density and denoted Fλ

12. Planck’s result was:

Fλ =
2πhc2

λ5
1

exp(hc/λkT ) − 1
(4.4)

10A mathematician would say the probability is zero for almost every speed.
11These numbers correspond approximately to 0.1 sec of full sunlight on 1 m2 of the Earth.
12One could just as well measure bin-size in Hz. The result is denoted Fν with units (W/m2)/Hz. A

helpfully sized unit for Fν is the jansky: 1 Jy = 10−26W ·m−2 ·Hz−1. Fν is commonly used in radio
astronomy whereas Fλ is commonly used in optical astronomy.
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where h is Planck’s constant, whose presence is a sign of the importance of quantum me-
chanical effects. The primary assumption in Planck’s derivation of this distribution was the
photon: an indivisible packet of light carrying total energy E = hc/λ. With this identifica-
tion notice the Boltzmann factor in Planck’s equation: exp(E/kT ). As before, this factor
means that high energy (i.e., short wavelength) photons are rarely in the mix of emitted
photons. Thus only ‘high’ temperature stars will emit an abundance of UV radiation.

Of course, the light emitted from the surface of a star gets spread over an ever larger area
as it moves away from the star. Thus the flux coming into a telescope a distance r from the
center of the star would be:

Fλ =
2πhc2

λ5
R2

r2
1

exp(hc/λkT ) − 1
(4.5)

Theoretically it’s now easy to measure the temperature of stars: simply measure the wave-
length distribution (‘spectra’) of the starlight and fit the measurements to the above theory
with two adjustable parameters: T and R/r. (Do notice that increasing R or decreasing
r produces exactly the same effect—an overall increase in the flux density—so we cannot
separately determine R and r from the spectra. A large, distant T = 6000 K star could
have exactly the same spectra as a small, close T = 6000 K star.) Let me enumerate a few
(of the many) reasons this does not work perfectly.

1. We assumed above that space was transparent: that the only effect of distance was
diluting the light over a greater area. However, our Galaxy is filled with patchy clouds
of dust. Unfortunately the dust in these clouds has the property of being more likely
to absorb blue light than red. Thus a dust-obscured star will lose more blue than red
light and the observed spectra will be distorted from that emitted. A dust-obscured
star would measure cooler and appear more distant (i.e., dimmer) than it actually
was. These two effects of dust are called ‘reddening’ and ‘extinction’. Of course
substantial dust absorption is more likely for more distant stars. It is usually ‘small’
for stars within 300 Ly of Earth. However, 300 Ly covers a very tiny fraction of
our Galaxy. In this lab we will side step this problem by selecting stars with little
dust absorption. However, with a bit of additional work, dust absorption could be
measured and corrected for using photometry.

2. Starlight measured from the surface of the Earth must traverse the Earth’s atmo-
sphere. The non-transparency of the Earth’s atmosphere will also modify the observed
starlight. In addition, the telescope and detector typically introduce additional ‘non-
transparency’, that is blue and red photons at the telescope aperture are not equally
likely to be counted. The ‘efficiency’ of the system depends on wavelength. Unless
extraordinary care is taken, this efficiency can change on a daily basis. (And, of
course, the atmosphere’s transparency can change in a matter of minutes.) As a re-
sult frequent calibration of the system is required. Calibration at the multitude of
wavelengths required to make a full spectra is obviously more difficult than calibration
at just a few wavelengths.

3. There is a competition between the accurate measurement of the value of Fλ and the
bin-size used. As you may have noticed in the Bubble Chamber lab, if you select a
small bin-size, each bin captures relatively few hits which results in relatively large√
N errors. So if you have only a few thousand photons, you may do better to use

a big bin-size (so you capture enough counts to get an accurate measurement of Fλ),
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but then only have a few bins (each spanning a large interval of in wavelength) so,
unfortunately, the spectrum has been reduced to just a few points. Of course, you
could always collect starlight for a longer period of time (longer ‘integration time’)
or use a telescope with a larger aperture. However, these solutions miss the point:
The boundary between the known and unknown in astronomy is almost always at
the edge of what you can just barely detect. Thus you must always come up with
the maximally efficient use of the available photons. Telescope time is allocated for
a detailed spectra only when it is expected that the results cannot be obtained in a
‘cheaper’ way.

4. Stars are not exact blackbodies, and of course they are not at a temperature. Cer-
tainly if we move from the surface to core of a star we would experience quite different
temperatures. But even on the ‘surface’ of our Sun we see regions (‘sunspots’) with
unusually low temperature. In the Langmuir Probe lab, you will find that the elec-
trons in a tube of gas may have a different temperature from the co-mingled atoms.
Similarly, in the atmospheres of stars it is not unusual for the various components of
the gas to be at different temperatures (that is to say the gas is not in local thermody-
namic equilibrium [LTE]). Hence it may make no sense to try to obtain high-precision
measurements of ‘the’ temperature.

Oddly enough the fact that stars are not blackbodies is actually helpful as it allows a
variety of information to be decoded from the starlight. (A blackbody spectra includes
just two bits of information the temperature T and R/r.) Varying absorption in the
star’s atmosphere means that some light (i.e., λ at which the star’s atmosphere is
largely transparent) comes from deeper in the star and hence represents a higher
temperature. Ultimately the absorption lines in a star’s spectra provide the bulk of
the information we have about stars. Chemical composition of the star’s atmosphere
and temperature—accurate13 to a few percent—are best obtained this way. However,
consideration of these absorption lines is beyond the aims of this lab.

Temperature I

Your aim in this lab is to measure the temperature of stars without resorting to a detailed
measurement of the star’s spectra. We begin by considering measurement of Fλ at just two
wavelengths: F1 at λ1 and F2 at λ2 where λ1 < λ2. (Think of λ1 as blue light and λ2 as
red light.) There is a huge cancellation of factors if we look at the ratio: F2/F1:

F2

F1
=
λ51
λ52

exp(hc/λ1kT )− 1

exp(hc/λ2kT )− 1
(4.6)

In general, ratios are great things to measure because (A) since they are dimensionless they
are more likely to be connected to intrinsic properties and (B) it is often the case that
systematic measurement errors will (at least in part) cancel out in a ratio. For starlight,
the flux will depend on distance (∝ 1/r2), but in a flux ratio the effects of distance will (in
theory) cancel out.

13Statements like this—that imply we know the true accuracy of our measurements—should be read with
the knowledge that history shows unexpected jumps in results as systematic errors are discovered. The
history of the measured chemical composition of stars would show graphs much like those in Figure 1 on
page 10.
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While the ratio has considerably reduced the complexity of the formula, it would help if
we had an even simpler formula. Towards that goal we make the approximation that the
exponential terms are much larger than 1:

F2

F1
=

λ51
λ52

exp(hc/λ1kT )− 1

exp(hc/λ2kT )− 1
(4.7)

≈ λ51
λ52

exp(hc/λ1kT )

exp(hc/λ2kT )
=
λ51
λ52

exp

[

hc

kT

(

1

λ1
− 1

λ2

)]

(4.8)

log(F2/F1) ≈ hc

kT

(

1

λ1
− 1

λ2

)

log e+ 5 log(λ1/λ2) (4.9)

Example

Consider the case where λ1 = .436 µm (blue) and λ2 = .545 µm (green or ‘visible’). For
historical reasons, astronomers prefer to consider 2.5 log10(F2/F1), and if we evaluate all of
the constants we find:

2.5 log10(F2/F1) ≈
7166 K

T
− 1.21 (4.10)

Do notice that for cool stars this quantity is large (more ‘visible’ than blue light) and
that extremely hot stars (T → ∞) will all have much the same value for this quantity:
−1.21. This last result is a consequence of the ‘Rayleigh-Jeans’ approximation for the
Planck distribution, valid for λ ≫ λmax. In this large wavelength (or high temperature)
limit, the Boltzmann factors are nearly one and:

exp(hc/λkT ) − 1 ≈ hc/λkT (4.11)

so14

Fλ ≈ 2πhc2

λ5
λkT

hc
= kT

2πc

λ4
(4.12)

Since temperature is now an over-all factor, it will cancel out in any flux ratio.

Color Index

At increasing distance from the star, both F2 and F1 will be diminished, but by exactly the
same fraction (assuming space is transparent, or at least not colored). Thus this ratio is an
intrinsic property of the star, and you saw above that this ratio is related to the temperature
of the star. The ratio is, of course, a measure of the relative amounts of two colors, and as
such is called a color index. (Our experience of color is independent of both the brightness
of the object and the distance to the object. It instead involves the relative amounts of the
primary colors; hence the name for this ratio.) Any two wavelengths λ1, λ2 can be used to
form such a color index, but clearly one should select wavelengths at which the stars are
bright and λ . λmax (to avoid the Rayleigh-Jeans region where the ratio is independent of
temperature).

14Do notice the absence of h in this classical result.
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Figure 4.2: In the case where λ1 = .436 µm (blue) and λ2 = .545 µm (green or ‘visible’), the
‘color index’ 2.5 log(F2/F1) is plotted as a function of temperature. The dotted line shows
the approximate result Eq. 4.10; the solid line shows the actual ratio of Planck functions.
Do remember that high temperature stars have a smaller, even negative, color index.

Magnitude

For historical reasons, astronomers typically measure light in magnitudes. Magnitudes are
related to fluxes by:

m = −2.5 log10(F/F0) (4.13)

where F0 is the standardizing15 flux that corresponds to m = 0. In astronomy log com-
monly16 refers to log10 (and so in the rest of this chapter I now drop the 10), although we
could equivalently write this equation in terms of other bases:

m = −2.5 log10(F/F0) = −1.085736 ln(F/F0) = − log2.511886(F/F0) (4.14)

The minus sign in this definition means that magnitudes work backwards: the brighter the
star, the smaller the magnitude. Very bright objects would have negative magnitudes. Since
the measured flux of a star depends on distance, magnitude is not an intrinsic property of
a star. Assuming transparent space, magnitude can be related to luminosity and distance:

m = −2.5 log

(

L

4πr2F0

)

(4.15)

Thus if a star’s luminosity is known and its magnitude measured, its distance can be cal-
culated. Astronomers define the absolute magnitude of a star to be the magnitude the star

15Historically F0 was defined as the flux of the star Vega, so Vega by definition had magnitude zero and
color index zero.

16Pun intended. Use of log10 is a bit old fashion. If you see ‘log’ (without an explicit base or further com-
ment) in a modern physics document, you should probably assume ln = loge is intended, unless something
historical is being discussed (like stellar magnitudes, dB or pH).
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would have if observed from a distance of 10 pc17. Thus:

m = −2.5 log

[

L

4πr2F0

]

(4.16)

= −2.5 log

[

(

L

4π(10 pc)2F0

)

·
(

10 pc

r

)2
]

(4.17)

= −2.5 log

[

L

4π(10 pc)2F0

]

+ 5 log

[

r

10 pc

]

(4.18)

= M + 5 log

[

r

10 pc

]

(4.19)

whereM is the absolute magnitude and the remaining term: 5 log(r/10 pc) is known as the
distance modulus. The main point here is that distance affects magnitude as a constant
offset. This result is a lemma of the general result:

Theorem: If the measured flux Fm is a fraction (ǫ) of the actual flux F (as would
occur due to a less-than-perfectly efficient detector, a dusty mirror, atmospheric absorption,
absorption due to interstellar dust,. . . ) the resulting magnitude as measured (mm) is just
a constant (2.5 log ǫ) off from the actual magnitude (m).

Proof:

mm = −2.5 log(Fm/F0) (4.20)

= −2.5 log(ǫF/F0) (4.21)

= −2.5 log(F/F0)− 2.5 log(ǫ) (4.22)

= m− 2.5 log(ǫ) (4.23)

In order to calculate flux (W/m2) from photon count rates, we must divide by the photon
collection efficiency, multiply by the energy per photon and divide by the collecting area
of the telescope. But why bother: the above theorem says these multiplicative factors
just result in a constant offset between the correctly calculated magnitude and one that
simply ignores these factors. Furthermore, many of these complicating factors (e.g., the
fraction of photons absorbed in the atmosphere) cannot be known in advance. Since some
of these factors cannot be known in advance, the plan is to ignore all of them (so the
computer program18 calculating magnitude will not ask you for the energy/photon, quantum
efficiency, telescope aperture, etc.), and instead experimentally determine the offset between
the computer’s magnitudes (which we will denote in lowercase, e.g., b) and the standard
magnitude (uppercase: B). So part of this lab will involve finding the constant offset that
relates our measured (instrumental) magnitudes to the actual (standardized) magnitude.

Filters

In the above equation for magnitude, the flux might be the total (all wavelengths or ‘bolo-
metric’) light flux, or a monochromatic flux density Fλ, or the flux in a particular range
of wavelengths. Much of astronomy is concerned with the flux through the five standard19

17pc = parsec = 3.0857 × 1016 m = 3.2616 Ly
18gaia magnitudes are calculated as: 50− 2.5 log(gain× net counts/exposure time)
19Johnson, H. L. and Morgan, W. W. (1951) ApJ 114 522 & (1953) ApJ 117 313

Cousins, A.W.J. (1976) memRAS 81 25
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U 0.36 0.07 4.22× 10−8

B 0.44 0.10 6.40× 10−8

V 0.55 0.09 3.75× 10−8

R 0.71 0.22 1.75× 10−8

I 0.97 0.24 0.84× 10−8

Figure 4.3: The characteristics of the standard filters: U (ultraviolet), B (blue), V (visible),
R (red), I (infrared) from Allen’s Astrophysical Quantities p. 387 and The General Catalogue
of Photometric Data: http://obswww.unige.ch/gcpd/system.html

U , B, V , R, and I filters. The characteristics of these filters are detailed in Figure 4.3,
but essentially each filter allows transmission of a range of wavelengths ∆λ, centered on
a particular wavelength. The name of the filter reports the type of light allowed to pass:
U (ultraviolet), B (blue), V (‘visible’, actually green), R (red), and I (infrared). The fil-
ters are broad enough that the resulting bin really doesn’t well represent a value for Fλ.
(An appendix to this chapter describes the u′g′r′i′z′ filters20 used in the Sloan Digital Sky
Survey.)

The magnitude of a star as measured through a B filter is called the B magnitude and
is simply denoted: B. Notice that we can now form color indices just by subtracting two
magnitudes. For example, the most common color index is B − V :

B − V = 2.5 (log(FV /FV 0)− log(FB/FB0)) (4.24)

= 2.5 (log(FV /FB) + log(FB0/FV 0)) (4.25)

= 2.5 log(FV /FB) + constant (4.26)

So B − V is related to the flux ratio FV /FB and so is an intrinsic property of the star
related to temperature. Furthermore, while Eq. 4.10 was derived assuming monochromatic

20Fukugita, M., Ichikawa, T., Gunn, J. E., et al. 1996 AJ, 111, 1748
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Figure 4.4: Using data from Allen’s Astrophysics Quantities calibration curves relating
stellar temperature to color index can be obtained. The fit equations for these curves is
given in the text.

flux densities (in contrast to the broad band fluxes that make up B and V ), we can still hope
equations similar to Eq. 4.10 can be derived for B − V . Allen’s Astrophysical Quantities
provides calibration data to which Kirkman has fit a curve:

B − V =
35800

T + 3960
− 3.67 + 1.08 × 10−4 T (4.27)

and the inverse relationship:

T =
1700

(B − V ) + .36
+ 5060 − 1600(B − V ) (4.28)

The data with fitted curve is plotted in Figure 4.4. Notice that for B − V < 0 small
uncertainties in B − V result in large uncertainties in T : it would probably we wise to
switch to a different color index like U −B to measure the temperature of such a hot star.

Similar work can be done for R− I, with results:

T =
2750

(R − I) + .314
+ 1400 + 160(R − I) (4.29)

For the Sun, Allen’s Astrophysics Quantities reports: T=5777 K, B − V=0.65, R− I=0.34
whereas Eq. 4.28 gives 5703 K and Eq. 4.29 gives 5659 K. In general errors of a few percent
should be expected.

Temperature II

The starting point for physics is usually hard intrinsic quantities like temperature, density
and pressure. However, in astronomy the transducers21 used to measure these quantities are

21In normal usage, a transducer is a device which converts a physical quantity (e.g., pressure, temperature,
force,. . . ) to an electrical quantity (volts, amps, Hz . . . ) for convenient measurement: for example, a
microphone. Here I’ve broadened the usual meaning to include natural ‘devices’ whose emitted or absorbed
light allows a physical quantity to be determined. Obviously we are connected to the stars by light, not
copper wires.
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Telescope Meade LX200
aperture 12”

focal ratio f/10
focal length 120”

Filter Wheel SBIG FW8-STL
filters blank, BV RI, g′r′i′

Camera SBIG ST-1001E NABG
pixels 1024 × 1024
image 28′ × 28′

scale 1.65”/pixel
weight 7.5 lbs

CCD Kodak KAF-1001E
pixel 24 µm× 24 µm

full-well ∼ 150, 000 e−/pixel
read noise 15 e− rms

gain 2.03 e−/ADU

λ Quantum Efficiency
.95 µm 20%
.80 µm 50%
.65 µm 65%
.50 µm 50%
.35 µm 20%

Table 4.1: CCD photometry equipment used at the SJU observatory.

parts of the star itself (say the absorption lines of a particular element in the atmosphere of
the star). We will always be a bit uncertain about the exact situation of these transducers,
and hence the calibration of these transducers is correspondingly uncertain. For example
stars with unusual chemical composition (like population II stars) or unusual surface gravity
g (like giant stars) really deserve separate calibration curves. Since the usual physical
quantities are in astronomy provisional and subject to recalibration, astronomers attach
primary importance to the quantities that are not subject to the whims of revised theory:
the actual measurements of light intensity. Thus astronomers use as much as possible
hard quantities22 like B − V directly without converting them to temperature using some
provisional formula. For example just using B − V , stars can be arranged in temperature-
increasing order, since there is a monotone relationship between B − V and T . Of course,
in this lab the aim is to measure star temperatures in normal units.

Summary

In this lab you will measure the temperature of stars by measuring their B,V,R, I magni-
tudes, calculating the color indices B−V and R−I, and then, using the supplied calibration
curves, find T . The calibration curves are based on detailed spectra of bright, normal stars;
In using these calibration curves we are automatically assuming our (distant and hence
dimmer) target stars are also ‘normal’.

Detector System

In this lab photons are counted using a charge coupled device or CCD. Our Kodak KAF-
1001E CCD consists of a typical 26-pin DIP integrated circuit with a window that exposes to

22In this lab you will see that even as simple a quantity as B is actually only distantly related to direct
meter readings. The direct meter readings must be ‘reduced’ to eliminate confounding factors like detector
efficiency or atmospheric absorption. Nevertheless, since these problems are ‘at hand’ astronomers believe
that they can be properly treated. Astronomers willing archive B data, whereas T calculations are always
considered provisional.
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light a 1”×1” field of 1024×1024 light sensitive regions or pixels. Photons incident on a pixel
free electrons via the photoelectric effect23. Each pixel stores its charge during an exposure,
and then each bucket of charge is transferred (in a manner similar to a bucket brigade)
to a capacitor where it produces a voltage proportional to the number of electrons. An
analog-to-digital converter then converts that voltage to a 16-bit binary number (decimal:
0–65535). A CCD image is thus a 1024×1024 matrix of integers. The units of these integers
is simply ADU for analog to digital units, but ideally the result should be proportional to
the number of incident photons. The combined effects of photon→ e− efficiency (‘quantum
efficiency’) and e− →ADU (‘gain’) means that there are ∼ 4 times as many incident photons
as ADU counts. Electron storage in a pixel is limited to a full-well capacity of ∼ 150, 000 e−;
additional photoelectrons will simply leak out of the well.

The Kodak CCD is contained within (and controlled by) a STL-1001E camera made by the
Santa Barbara Instrument Group24. In front of the camera, an SBIG FW8-STL filter wheel
allows computer controlled placement of one of the B,V,R, I, g′, r′, i′ filters or a blank.

The SBIG camera is mounted on a Meade 12” LX200 Schmidt-Cassegrain Catadioptric
telescope. The orientation of the telescope is controlled by a Paramount ME mount using
TheSkyX25 software. Once the telescope has been initialized the telescope control software
allows the telescope to be directed to a long list of cataloged objects or to any location
specified by RA/dec26.

Linearity

In an ideal CCD, the count in a particular pixel should be proportional to the number
of photons absorbed, which in turn should be proportional to the exposure time. This
proportionality fails for large exposures and the CCD saturates as the count approaches
60,000 ADU. (The count actually jumps up to the 16-bit maximum 65535 on saturation.)
Of course, if a pixel is saturated, additional photons are missed, and the (now pegged) ADU
count falls below actual photon flux. CCD linearity was tested by varying the exposure time.
The results are displayed in Figure 4.5.

The calculated magnitude of a star—a measurement of the photon flux (counts/time)—
should not depend on the exposure time. Of course, for very short exposures the handful
of counts above background is subject to a relatively large random fluctuation, and so the
magnitude will have a relatively large uncertainty. As we’ve just learned, sufficiently long
exposures will result in pixel saturation and hence a systematically low count and a too-large
(dim) magnitude. As shown in Figure 4.6, there is a large range of exposures (including
those with slight saturation) which can produce an accurate magnitude.

23Albert Einstein (1879–1955) received the 1921 Nobel prize for his 1905 theory explaining this effect.
Robert Millikan’s [(1868–1953), B.A. Oberlin College, Ph.D. Columbia] experimental studies (1912–1915) of
the photoelectric effect were cited, in part, for his Nobel in 1923.

24www.sbig.com
25both from bisque.com
26See page 85 for a list of online tutorials covering basic astronomy vocabulary.
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Figure 4.5: Below ∼ 60, 000 ADU (30 second exposure) the response of our CCD seems to
be linear (reduced χ2 ∼ 1 for errors approximated as

√
ADU—generally an overestimate

for error), with saturation evident in the 32 second exposure. (At ∼ 62, 000 ADU the
count jumps up to the 16-bit maximum 65535.) The linear fit even looks good at minimum
exposure times where systematic error in the shutter speed control is expected. Note that
the y intercept is not exactly zero: with this camera zero-time exposures are designed to
produce an output of about 100 ADU.
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Figure 4.6: The magnitude of four stars was calculated from frames with various exposures.
The brightest two stars have saturated pixels in 20 sec exposures and the dimming mag-
nitude is evident in exposures longer than 30 sec. The third brightest star begins to be
saturated at 240 sec. The fourth star is not saturated. Notice that a handful of saturated
pixels will generally not result in a large magnitude error.
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Flat Frame

Individual pixels have different sensitivities to light. While the effect is not large (∼ 5%),
it would be a leading source of uncertainty if not corrected. The solution is (in theory)
simple: take a picture of a uniformly illuminated surface, and record the count in each
pixel. Evidently this ‘flat frame’ count records how each pixel responds to one particular
flux level. If in another frame a pixel records some fraction of its flat-frame count, linearity
guarantees that the measured flux level is that same fraction of the flat-frame flux level.
Thus to correct for varying sensitivities we just divide (pixel by pixel) the raw CCD frame
by the flat frame.

In practice it is difficult to obtain a uniformly illuminated surface. In a sky flat, one assumes
that the small section of a blue sky covered in a CCD frame is uniform. (Typically this
is done after sunset so the sky is dim enough to avoid saturation in the short (. 1 sec)
exposure, but not so dim that stars show through.) In a dome flat we attempt to uniformly
illuminate a white surface with electric lights. Whatever the source of the flat, it is best to
average several of them to average out non-uniformities in the source.

It should be clear that a flat frame records the overall efficiency of the system: both the
varying quantum efficiency of individual pixels and the ability of the telescope to gather
light and concentrate it on a particular pixel. Generally the optical efficiency of a telescope
decreases for sources far from the optical axis. The off-axis limits (where the optical ef-
ficiency approaches zero) define a telescope’s maximum field-of-view. The limited optical
efficiency near the edge of the field of view leads to ‘vignetting’: the gradual fade of optical
efficiency to zero at the extreme edge. In addition optical flaws, like dust on optical surfaces,
are recorded in a flat frame. As a result a flat frame depends on the entire detection system
(telescope, filter, chip) and will gradually change, as for example, dust accumulates on the
mirror.

Bias Frame

A careful examination of the linearity plots in Figure 4.5, shows that they do not go through
the origin. That is, a zero-time27 exposure produces some counts, simply by the process of
reading the CCD. The uncertainty in this bias frame (the ‘read noise’) represents the min-
imum background noise in any pixel. Measurements on our CCD shows that the difference
between two bias frames shows an approximately normal distribution (aside from the flaws)
with a standard deviation ∼ 11 ADU. Also note that the system artificially introduces an
offset of 100 into each pixel, so 2

3 of the pixels in a single bias frame are expected in the

range 100± 8 ADU. (8 ≈ 11/
√
2)

Dark Frame

Even in the total absence of light, pixels will slowly accumulate charge. The electric cur-
rent leaking into the pixels is strongly affected by temperature, hence the name ‘thermal
current’ and it produces accumulated charge in the absence of starlight, hence the name
‘dark current’. The professional solution is to cool the CCD using liquid nitrogen, which

27With the STL-1001E the minimum exposure is actually 0.12 s
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(b) Part of a row of pixels is displayed at three
temperatures: • = 0◦C, � = −10◦C, H =
−20◦C. Isolated hot pixels are randomly sprin-
kled throughout the image (here at columns 43
and 56). The data here and in (a) are from 15
minute dark frames.
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(d) While it is more evident in this low count
data, there is always random deviation in
counts. While we can subtract the average dark
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‘noise’ in our images. Reducing the temper-
ature reduces this noise.

Figure 4.7: Dark frames are ‘exposures’ with the shutter closed. The source of these counts
is not starlight, rather a thermally induced current allows charge to accumulate in each
pixel. This ‘dark current’ can be exceptionally large in ‘hot pixels’.
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reduces the dark currents to near zero. The STL-1001E uses a less cumbersome (but less
effective) solution: a thermoelectric cooler which can cool the CCD ∼ 40◦C below ambient
temperature, reducing the dark currents by more than a factor of 10. The resulting dark
currents are not negligible for exposures longer than a few minutes. A ‘dark frame’ is sim-
ply an ‘exposure’ with the shutter closed; it is a bias frame plus accumulated charge due
to dark currents. A dark frame can be subtracted from an (equally timed) exposed frame
to compensate for this non-photon-induced current, however variation in the dark current
(‘noise’) results in a corresponding uncertainty in the adjusted pixel counts.

There is tremendous pixel-to-pixel variation in the dark current. About 1% of the pixels
have a dark currents ∼10 times the typical value. The ‘hottest’ pixels28 will saturate in a
5 minute exposure at 0◦C. Thus a dark frame looks black except for a handful of bright
(‘hot’) pixels; it could be mistaken for the night sky, except the ‘stars’ are not bright disks
rather isolated, single hot pixels. Since taking a dark frame takes as much time as a real
exposure, use dark frames only when required: when you are taking real data. Simply learn
to disregard the sprinkling of isolated hot pixels in non data-taking situations.

Since the dark current depends on temperature, the CCD needs to achieve a stable tem-
perature before the dark frames are taken. The CCD has an on-board thermometer, but a
stable temperature at one point does not mean that the temperature as stabilized through-
out the CCD. Direct measures displayed in Figure 4.8 show that it may take several hours
to achieve reproducible dark frames. And the lower the requested temperature the longer
it takes to achieve thermal equilibrium. For a requested temperature of −20◦C, 1.8 hours
are required for 95% (e−3 with τ ≈ 0.6 hour) of the excess counts to be eliminated. For a
requested temperature of −10◦C, 0.8 hours are required for 95% (e−3 with τ ≈ 0.26 hour)
of the excess counts to be eliminated. When requesting particularly low CCD temperatures
it is advisable to take dark frames at the end of the observing session or to cool down the
camera well before sunset. (That is, the obvious time time to take dark frames—at dust
between taking sky flats and dark-sky frames—may not be the best time to take the dark
frames.)

Data Frames

The term ‘object frame’ here refers to a raw CCD frame of the sky as delivered by the
camera-controlling software. If the object frame was not automatically dark-subtracted,
there must be a matching (time & temperature) dark frame. A ‘reduced frame’ is an object
frame that has been dark-subtracted and flat-field corrected. By adjusting for non-photon-
induced charge and varying pixel sensitivity, we hope our reduced frame shows the actual
distribution of photons. It should be noted that all of these corrections will be applied by
making the proper requests of the CCD control software. In the end, you should retain
both the fully processed reduced frame and the original object frame.

28For example: (265, 742), (68, 97), (233, 866), (266, 166)
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Figure 4.8: It can take hours to achieve a stable CCD temperature. The left plot displays the
results of a sequence of 900 sec dark frames at an indicated (stable) temperature of −10◦C.
The count for the median (50 percentile), 75%, and 98% pixel is displayed as a function of
time. In all cases the approach to equilibrium is exponential with τ ≈ 0.26 hours. Analogous
results for −20◦C show a much slower approach to equilibrium (τ ≈ 0.8 hours).

Basic Plan

Given a reduced frame, determining the number of counts/second from a star is a relatively
straightforward29 task which will be performed (with your help) by the software. This re-
sulting rate must be converted to flux by multiplying (or dividing) by a variety of factors:
collecting area of the telescope, reflectivity of the mirror, quantum efficiency of the CCD,
CCD gain, . . . . However the main point is that there is a proportionality between this rate
and the actual flux. By our theorem, this means that a magnitude calculated just using this
rate (an ‘instrumental magnitude’) is just a constant off from the actual standardized mag-
nitude. If we have a star in the reduced frame of known magnitude, that constant difference
can be calculated just by taking the difference between the instrumental magnitude and the
known magnitude. And then that calibrating constant can be applied to every star in the
reduced frame, converting each instrumental magnitude to a standardized magnitude. In
practice it is wise to use several calibrating stars and use the average value of magnitude
difference as the calibration constant. (The standard deviation of the magnitude differences
then gives us an estimate for the error.) The calculation of instrumental magnitudes (i.e.,
calculating −2.5 log(rate)) is also a straightforward task best left to software. All you will
need to do is calculate (probably using a spreadsheet) the magnitude differences of the
calibrating stars, and then find their mean and standard deviation.

29Many important details are hereby hidden from view. A short list: (1) determining the background level
to be subtracted from the star pixels (2) determining the proper aperture that encloses all the stars light
or accounting for the star’s light that has blended into the background (3) accounting for the star’s light
that is between pixels (4) dealing with pixels that are only fractionally within the aperture. In summary:
background and point spread function (PSF) are the key issues.
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Figure 4.9: Stars that are near zenith go through the minimum amount of the Earth’s
atmosphere. Stars at a zenith angle z go through sec z times that minimum. This figure
displays the atmosphere as a finite thickness slab, whereas in fact the atmosphere gradually
thins out to nothing. Nevertheless, meter-by-meter a star at angle z must go through sec z
times as much atmosphere as a star at zenith. ‘Air mass’ is defined as this multiplicative
factor: sec z.

Complications

Air Mass Corrections

Magnitudes are intended to be archivable numbers in which the particulars of the obser-
vation (e.g., telescope aperture, quantum efficiency, transparency of the atmosphere,. . . )
have been removed. As describe above, this is relatively easy if the reduced frame con-
tains calibrated sources. On the other hand, if we have separate reduced frames for the
object and calibrated stars, we must arrange that the entire detection system (atmosphere
included) acts the same (i.e., the same proportionality constant between rate and flux) for
both frames. However, it is difficult to find calibrated stars that have the same angular
altitude as the object; Thus one frame must be shot through a thicker slice of atmospheric
than the other. Air mass corrections adjust for this path length difference and assume that
the atmospheres (and optics) were otherwise identical.

The absorption of light is a multiplicative phenomenon; that is, if the first meter of the
atmosphere allows fractional transmission of light T1 and the next T2, etc, then the intensity
of light through a sequence of meters is:

F = TNTN−1 · · ·T2T1 F0 =

N
∏

i=1

Ti F0 (4.30)

Since it is easier to deal with additive quantities rather than multiplicative quantities we
define the optical depth τ by:

T ≡ e−τ (4.31)

so

F = TNTN−1 · · ·T2T1 F0 = exp

(

−
N
∑

i=1

τi

)

F0 (4.32)
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According the Beer-Lambert law, the absorption of light depends on atomic absorptivity
(the ‘cross section’ σ, which generally depends on the wavelength of light), the number of
atoms per volume (‘number density’ n), and the path length ℓ:

τ = σnℓ (4.33)

We can think of the atmosphere as a sequence of filters, so the light intensity through the
atmosphere is:

F = exp

(

−
N
∑

i=1

σn∆ℓ

)

F0 = exp

(

−
∫

σn dℓ

)

F0 (4.34)

Of course the density of the atmosphere (and to some extent the composition of the atmo-
sphere) depends on altitude. If we consider light that has taken the shortest path through
the atmosphere (i.e., from a star directly overhead or at zenith), we call the above integral
τ0(λ). (The dependence of τ0 on the wavelength of light is of course due to the dependence
of σ on the wavelength of light.) As shown in Figure 4.9, if a star is at zenith angle z, the
path length (and hence τ) in increased by the air mass factor sec z. Thus:

F = exp (−τ0 sec z)F0 (4.35)

The magnitude that corresponds to this flux is:

m = 2.5τ0 log e sec z +m0 (4.36)

where m is the magnitude measured at zenith angle z and m0 is the magnitude as measured
without any atmospheric absorption (i.e., the standardized magnitude). For any single
star one can (assuming the atmosphere doesn’t change over the few hours required) plot
(sec z,m) data as the star rises, culminates and sets, and determine the y-intercept which is
m0. Alternatively for a set of stars each with known m0 and measured m at varying sec z,
one can determine the correction factors A and B required to convert a star’s (sec z,m) to
m0:

m−m0 = B sec z +A (4.37)

Thus lacking in-frame calibrated stars, several calibration frames (at different sec z) are
required for each filter, and the reduction process becomes much more complicated.

Note that the zenith angle z can be calculated30 from:

cos z = sin δ sinϕ+ cos δ cos h cosϕ (4.38)

where δ and h are the star’s declination and hour angle and ϕ is the observatory’s latitude.
The above terms from astrometry (declination, hour angle, altitude, zenith, right ascension,
. . . ) are part of the everyday vocabulary of astronomers. If you are not familiar with these
terms you should read the following online tutorials:

• http://www.physics.csbsju.edu/astro/CS/CSintro.html

• http://www.physics.csbsju.edu/astro/sky/sky.01.html

• http://www.physics.csbsju.edu/astro/terms.html

For example at SJU (ϕ = 45◦34.5′) for stars on the celestial equator (δ = 0), the minimum
air mass (at h = 0h) is sec z = 1.43. The sequence of air masses: sec z=1.5, 2.0, 2.5, 3.0
occurs at hour angles h = ±1.18h,±2.96h,±3.68h,±4.10h. Figure 4.11 plots these air mass
values for other declinations.

30xephem can do this calculation for you
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Figure 4.10: The instrumental magnitude minus the standardized magnitude (v − V ) for a
red star (�) and a blue star (�) as a function of the air mass. Notice that the slopes are
quite similar (i.e., .177 sec z), but the intercepts are slightly different (∆ = 0.016(B − V )),
due to the difference in color. This color correction is explained in the following section.
The rms deviation in these fits is 0.005 magnitudes which is about 1

3 the intercept shift.
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Figure 4.11: Air mass (sec z) depends on where a star is in the sky. Air mass is plotted here
as a function of the star’s declination and hour angle for the SJU observatory location. Z
marks zenith, where the minimum (1) air mass is found.
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Figure 4.12: The atmosphere (in fact any optical component) acts as a colored filter on
incident starlight. Typically short wavelength light is more strongly attenuated (i.e., re-
duced) than long wavelength light. Consider two stars that have the same B magnitude
outside the atmosphere. Of course, the hot star has a larger fraction of its light in the
short wavelength side of the B band. As a result more of its light will be affected and its
measured magnitude will deviate from that of the cool star. In a tremendous exaggeration
I’ve assumed above 50% absorption at the short-λ end of the B band, and 0% absorption
at the long-λ end. As a result the total measured B-band flux (the shaded area) will be
larger for the cool star even though both stars had the same flux outside the atmosphere.
If narrow band filters are used there will be much less change in absorption over the band
and so this effect is much reduced.

Color Corrections

We learned in the above section that the Earth’s atmosphere acts as a non-negligible filter,
attenuating (absorbing or scattering, generally reducing) starlight before it reaches our
telescope. The fact that the atmosphere looks blue tells us that the atmosphere in fact acts
as a colored filter, attenuating some wavelengths more than others. (That is, σ depends on λ,
with short-λ (blue) light more attenuated than long-λ (red).) As discussed in Figure 4.12,
this means that two stars which, outside our atmosphere have the same magnitude but
different temperatures, will be measured as having different magnitudes from the ground.
The upshot of this is the atmospheric optical depth parameter τ0, depends (slightly) on the
temperature, T , of the star:

B = 2.5 τ0(T ) log e sec z +B0 (4.39)

where B is the magnitude through the B filter at ground level and B0 is the atmosphere-free
B magnitude. The temperature of the star is related to the actual B0−V0 color index, which
in turn is related to the instrumental color index b − v. If we make a first order Taylor
expansion of τ0(T ) in terms of b − v, we have (after lumping together all the unknown
constants and assuming all the stars in the frame have the same z)

b ≈ αB + βB(b− v) +B0 (4.40)

That is the offset between the instrumental magnitude and the atmosphere-free magnitude
is not exactly a constant; instead we expect a slight dependence on the color of the star. A
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Figure 4.13: Every photon detected in a CCD frame has traversed (essentially) the same
patch of atmosphere, so each star’s image suffers the same distortion. Every stellar ‘image’
(really point spread function or PSF) has the same shape, only the total flux in each image
varies (with the star’s magnitude). However, a brief inspection of an image will show clearly
larger spots for brighter stars. As shown above this is simply a matter of the level chosen
as bright.

linear fit (using the data from the calibrated sources) can then be used to determine α and
β, viz:

b−B0 = αB + βB(b− v) (4.41)

and similarly for the V magnitudes:

v − V0 = αV + βV (b− v) (4.42)

Subtracting these two equations gives us the relationship between the instrumental color
index and the atmosphere-free color index:

(b− v)− (B0 − V0) = αB − αV + (βB − βV )(b− v) (4.43)

[1 + (βV − βB)] (b− v) + (αV − αB) = B0 − V0 (4.44)

Thus we expect a linear relationship (with a nearly unit slope) between the instrumental
color index and the atmosphere-free color index. The parameters of this linear relationship
can be determined by a fit using the data from the calibrated stars.

Aperture Corrections

When you look at your CCD frames, you will not believe my statement that all the star
images (really PSF) have the same size. However, both bright stars and dim stars are far
enough away that their angular diameters are effectively zero (less than a thousandth of a
single pixel). The photons from each star shoot through the Earth’s atmosphere and are
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deflected this way and that producing a multi-pixel disk in the frame. This is called atmo-
spheric seeing (particularly for image size) or scintillation (particularly for image bright-
ness). But since every photon is shot (basically) through the same patch of atmosphere,
these random deflections must have the same distribution. The difference between a dim
star and a bright star is simply the total number of photons in the images. (That is a long
time exposure of a dim star should look exactly31 like a short exposure of a bright star
if the two cases produce the same number of photons.) To see that the distributions are
identical you should look at the full width at half maximum (FWHM) of the PSF: First
determine the peak count in an image, and then find the circle at which the count is half
of this maximum. The diameter of the circle (typically a few arcsec) is the FWHM.

Because of the obvious difference in the image size, when totaling the counts in a stellar
image, one is tempted to expand or reduce the circle of pixels counted as part of a star to
match the apparent size of that star. Do not do this! Instead keep a constant aperture size
for all frames. It may appear that counts will be missed as bright stars overflow the aperture,
whereas dim stars have a too-large aperture. However recall that all stars actually have the
same extent. Furthermore our theorem states that if we capture a consistent fraction of the
counts in every star, all our instrumental magnitudes will just be a constant off from the
standardized magnitudes. So a consistent fraction of the counts may be combined with all
the other proportionality constants in the final difference between instrumental magnitude
and standardized magnitude. Now there may be occasions where we must adjust the aper-
ture used for magnitude calculation (for example to exclude a neighboring star), however
then inconsistencies (and hence errors) are then being generated. The disadvantage of using
a constant aperture is relatively more noise-prone ‘background’ pixels will be included in
dim stars. There are a variety of solutions to this problems (generally under the heading of
PSF fitting), however they are beyond the aims of this lab.

The blurring of star images (i.e., PSF) depends both on atmospheric seeing and the ad-
justment of the telescope. Clearly an out-of-focus telescope (see below) will distribute the
same photons in a larger radius disk. It should also be noted that the telescope’s ‘optical
aberrations’ result in additional blurring (‘coma’) near the edge of the telescope’s field of
view.

Focus

The aim of focus is to achieve that smallest possible FWHM, so each star’s light is con-
centrated in the fewest possible number of pixels. Same number of photons in fewer pixels,
means a higher count in those central pixels. Since every pixel comes with a certain back-
ground ‘noise’, fewer pixels means less noise in the stellar magnitude. You should plan on
spending a good bit of time (maybe a half hour) trying to achieve the best possible focus.
There are two approaches to monitoring improved focus: (1) monitor the peak count in a
bright star (∼ 4 mag), (2) watch for the appearance of numerous dim stars as their peak
gets above the ‘bright’ level. (You must learn to ignore the apparent size of bright stars:
it is a poor measure of good focus.) A complicating factor is that both (1) and (2) vary
independently of focus adjustments since atmospheric seeing varies from second to second,
and since photon counts should be expected to vary ∼

√
N .

31We are assuming, of course, that the atmosphere acts the same during the long exposure as it does
during the short exposure. No surprise: in fact the atmosphere is not time-invariant.
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Software

xephem

xephem is planetarium software designed to display various types of night-sky maps in
advance of observing. You will also use it to tabulate astrometry data relevant to your
observations. The file using.xephem.txt describes how to use this program to produce the
tables and maps required for the pre-observation phase of the lab. In addition you can use
it for astrometry and photometry on .fit images (although I recommend gaia below for
these reductions).

Aladin

Aladin is a front-end to various astronomy databases on the internet. You will use it to
find images to use as finder maps and to identify (and obtain data on ) the stars in those
images. The Aladin server and SkyView+ are often a good sources of DSS (Digital Sky
Survey using visible-light) images; Simbad32 is the usual source for stellar information.
Sometimes just information from the SAO catalog is required; then VizieR33 can be used
to access just the SAO catalog. You will use Aladin mostly in the pre-observation phase.
The file using.Aladin.txt briefly describes how to use this program to produce the maps
and data required for the pre-observation phase of the lab. Note: NASA has a very handy
web page34 that also allows you to do many of these things. gaia (see below) is also and
excellent way to make finder maps.

CCDops

CCDOps is software used to control the camera and create/save CCD frames. You will be
using a small fraction of its capabilities. Typical commands will be: to set the temperature
(cooling) of the CCD, focus, grab images (set the exposure time and perhaps take a dark
frame), examine images (histogram, crosshair), save images (in .fit and other formats),
and reduce images by dark-subtracting, flat-fielding or averaging.

gaia

gaia is the recommended reduced-frame analysis program. In order to use gaia your images
must be in either .fit or ndf (.sdf) format; you should use .fit. The file using.gaia.txt
briefly describes how to use this program.

In addition to reporting a star’s magnitude, gaia will report the error in that magnitude.
This error is based on counting (Poisson statistics,

√
N). These errors will be smaller for

brighter stars; a typical value might be ∼ 0.003. Record one typical gaia-reported error

32http://simbad.u-strasbg.fr/
33http://vizier.u-strasbg.fr/
34http://skyview.gsfc.nasa.gov/: start with 1000×1000 pixel Digitized Sky Survey image with 0.5◦

Image Size, B-W Log Inverse Color Table, and a Grid
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for your stars. Because of systematic errors, you will find the actual error is much larger
∼ 0.02.

IRAF

IRAF is the Image Reduction and Analysis Facility, a general purpose software system
for the reduction and analysis of astronomical data. It is the standard for professional
astronomers: designed for the expert user—with no compromises for the beginner. While
its use is encouraged for those thinking of becoming astronomers, I cannot recommend it
for this lab. ds9 (whose name really does derive from Star Trek) is an image viewer/creator
that is often used in conjunction with IRAF.

Planning to Observe

Minnesota weather is is unpredictable35 and we need an extraordinary, no-visible-clouds
night. We must be prepared to use any/every of these rare nights on short notice. Of
course, you have other commitments (your concert, the night before your math/physics
exam, the St. Thomas game. . . ), the aim here is to examine those constraints in well in
advance and sign up only for dates you can guarantee attendance. Note that Murphy’s Law
guarantees that if you forget to X-out some important night (your girlfriend’s birthday, the
day before your term paper is due, a ‘free’ day), that night will be clear, and somebody (I
hope not me!) is going to be disappointed. Intro astro labs are going X-out many Monday
and Wednesday nights.

Mark on the class calendar (in PE132) the dates you and your lab partner(s) are committed
to observe. In the afternoon of any day you’ve signed up for, contact me to confirm that the
observatory is ready and that all involved know, not just the plan, but also the contingency
plan (e.g., how/when I’ll decide if the weather actually is a ‘go’).

Since clear nights are precious, ‘go’ days need a well-thought-out plan. If you’re following
the standard project, your plan involves a target whose frame will include several stars with
known36 B,V,R, I magnitudes. In the Fall this is often IC 4665 (a name that is known
to xephem, Aladin, skyview, etc.). Thus you need to: (A) Find a target that has the
required stars. (Stars with recorded R magnitudes are relatively rare.) (B) Know where
those standard stars are in your target (so you can aim so your CCD frames to include the
stars you need). (C) Know where your target is among the neighboring stars (so if your
first try at finding the target fails, you have a plan [not ‘hunt-and-peck’] for getting to the
right spot). (D) And of course, know that your target is well above the horizon when you
are planning to observe. While the standard project does not require additional standard
stars, you may want you to record alternative (out-of-frame) standards.

35http://www.physics.csbsju.edu/astro/ has a link designed to report (guess) sky conditions at the
SJU observatory. It cannot be relied on, but I believe it’s the best available information. Note: black is
good for this clear sky clock.

36Professionally, only very carefully measured ‘standard’ stars—for example those measured by Landolt
or Stetson—would be used for calibration. For the purposes of this lab you may use any star that has a
‘book’ magnitude. It is not at all unusual for such literature magnitudes to have 10% errors
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Pre-observation Checklist

From the class web site find photometry/observatoryCCD4.txt. Print out a copy. You
will cut out and tape relevant sections of this file as part of your lab notebook Procedure.
Of course you will annotate this outline procedure so you have a record of exactly how your
ran the telescopes (particularly the procedure to control the software).

The following should be prepared for one of your candidate observing dates:

1. Sunset time. (Typically you are expected to arrive at the observatory ∼30 minutes
before sunset.)

2. Using xephem set for about two hours after sunset print out the following:

(a) A Sky View showing the entire sky with the labeled location of the target.

(b) A .xephem/datatbl.txt file recording basic data (RA, dec, altitude, air mass,
. . . ) for the target at the suggested observation time. The file using.xephem.txt
describes what data you need to have recorded.

3. Using Aladin (or web-based skyview.gsfc.nasa.gov) print out the following finding
charts for your target cluster:

(a) a low magnification (degree scale) image showing the desired CCD frame.

(b) an image scaled to about the CCD frame size (0.5◦) showing exactly the desired
CCD frame. (Since the target CCD frame must include calibrated stars, clearly
you must know where the calibrated stars are in the target.) Record the RA and
dec for your target frame(s).

Learning to effectively use these pre-observation programs will be a bit of a challenge and
take several hours, so do not procrastinate and feel free to seek my help. In addition to the
usual problems of learning new software, you will need to learn how to make the web-based
astronomy databases find the information you need. However, if you’ve failed to make these
pre-observation finding charts, you can probably still make observations using one of the
perennial targets (IC 4665 in the fall, M 67 in the spring).

Observation Evening

In order to take data the sky needs to be 90% cloud free: we must be able to aim the
telescope at a star and not have a cloud go through that spot for an hour. Years of
experience shows it is not possible to predict, even an hour before sunset, what the sky will
be like at sunset. Thus the plan is for you to look at the sky 45–30 minutes before sunset
and decide if the sky is suitable. Kirkman will do the same, and if we both reach the same
conclusion (not a sure outcome!) we will both arrive at the observatory 30 minutes before
sunset. Since we need to take flats during sunset, if all parties don’t arrive well before
sunset, the observing session is canceled. Plan to be at the observatory for 2–3 hours (no
eating in the observatory; no bathroom in the observatory). Perhaps an hour of that period
(after flats, waiting for the sky to darken) will involve really monotonous tasks: feel free
to bring homework or entertainment to the observatory to occupy that period. If you’re
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not sure where the observatory is check out the links at www.physics.csbsju.edu/astro.
Also on that page, check out the “Sky weather prediction for SJU Observatory”. This
link to the “Clear Sky Chart” has proven to be the best of many poor predictors of sky
conditions. Look for the raw data frames to appear on the linux filesystem in the directory
/ccd/YYMMDDlab, e.g., pictures taken during the evening of 4th of July would be in
/ccd/190704lab.

Note: We will be taking several (often three) duplicate frames through the four different
filters. Between object frames, darks, and flats typically ∼100 pictures are taken.

Example 1: Plan for Lunar Month starting 21-July-2005

Immediately on starting xephem, Set the location: SJU Observatory, click on the Calendar
for the following new moon (“NM”, in this case 4-August-2005) and enter a Local Time of
21:00 (9 p.m.). Hit Update so xephem is ready to display the sky at that time. View→Sky
View then displays the night sky for that location/date/time. (Print a copy of this sky view
as described in using.xephem.txt and record: UTC Time: 2:00, Sidereal: 16:37.) IC 4665
is the obvious target; its RA (listed in Table 4.2) is most nearly equal to the sidereal time
and hence it is near the meridian, However, with a diameter of 70′, IC 4665 is much larger
than the ST7 CCD frame, so only a small fraction of it will be imaged—a fraction that must
include several calibrated stars. A visit to the IC 4665 cluster web page37 finds a couple of
dozen of VRIc observations. I copy and paste that data into a spreadsheet, and then seek
corresponding UBV CCD data. The result is 12 stars with the full set of BV RI data. Next
we need to find a CCD frame that will include as many of these stars as possible. (It is of
course possible to use a different set of stars to calibrate different filters, but it will be easier
if one set of stars will serve for all calibrations.) Surprisingly, most of the 12 stars have
SAO38 identifications; only three stars must be located by RA and dec. Aladin can find a
low magnification (1.5◦ × 1.5◦) image of IC 4665. (Print this image as a low magnification
finder chart.) A request to VizieR for the SAO catalog objects near IC 4665 allows me
to locate the calibrated sources found above. Since IC 4665 is much larger than our CCD
frame, we aim for the largest possible subset of these stars. A CCD frame centered near
SAO 122742 will pick up four fully calibrated stars (73, 82, 83, 89). Simbad gives B−V data
for several other bright stars in this frame (e.g., TYC 424-75-1, Cl* IC4665 P44), but I don’t
find additional R−I data in Simbad. Returning to obswww.unige.ch, I find (depending on
the exact position of the CCD frame) it may be possible to include R − I calibrated stars
67, 76, 84, & 90. You should decide exactly how to place the CCD frame and locate the
calibrated stars on a finder chart that is about 2× the size of the CCD frame. For focus
stars consider SAO 122671 (mag=3) and SAO 123005 (mag=5). Note that SAO 122723
would make a good (bright: mag=6.8) star to aim the LX200 near this object. (I call
such aiming/finding stars ‘LX200 stars’. The LX200 object library includes all SAO stars
brighter than magnitude 7, but any bright star can help assure the telescope is aimed at
what you intend (and that the telescope’s reported RA/dec are accurate). You can load the
SAO LX200.edb database into xephem to display the LX200 stars; SAO mag75.edb includes
about twice as many stars (down to magnitude 7.5); SAO full.edb includes about a quarter
of a million stars (down below magnitude 9).

37http://obswww.unige.ch/webda/
38Smithsonian Astrophysical Observatory—a standard catalog of ‘bright’ stars.
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In such a large cluster, it would be wise to select additional fields, for example one centered
near SAO 122709. A CCD frame there might include R− I calibrated stars: 39, 40, 43, 44,
49, 50, 58, 62.

To select alternative standards. . .WIYN has a web page39 with recommended standard star
regions. (WIYN’s stars are designed for a large telescope, and hence would require long
exposures on our telescope). Peter Stetson’s extensive list of standards is also online40.
The xephem databases LONEOS.edb, Landolt83.edb and Buil91.edb contain shorter lists
of brighter stars: < 13mag, ∼9.5mag and < 8mag respectively.) Generally these good
standard stars will be well-separated from the target, so air mass air mass correction would
be required. (Since I have internal ‘calibrated’ sources, I’m not required to take CCD frames
of these standards, however I’ve decided to ‘be prepared’ and hence have recorded the basic
data I would need to observe them.) I select: #109 (PG1633+099, at RA=16:35, LX200
star: SAO 121671), #121 (110 506, at RA=18:43, LX200 star: SAO 142582), and #125
(111 1969, at RA=19:37, LX200 star: SAO 143678, also see: SAO 124878). These standard
stars can be marked as xephem Favorites from the UBVRI.edb database. These sources
should span a good range of air mass in the general direction of the target. Following the
instructions in using.xephem.txt, I create a file of basic location data for my target and
standard fields. By default, this file is: .xephem/datatbl.txt and can be printed (% lp

filename) or edited (% kwrite filename).

Example 2: Plan for Lunar Month starting 19-August-2005

After Setting xephem for location: SJU Observatory, the new moon date 3-September-
2005, and Local Time 21:00 (9 p.m.), I find and record: UTC Time: 2:00, Sidereal: 18:35.
NGC 6633, whose RA is most nearly equal to the sidereal time and hence is near the
meridian, is the obvious target. After adding NGC 6633 to xephem Favorites and loading the
SAO database (Data→Files; Files→SAO mag75.edb), it’s easy to zoom in (lhs scroll bar) on
NGC 6633 and find the nearby bright (5.7 mag) star SAO 12351641 , which would be a good
star to steer the LX200. For focus stars consider SAO 122671 (mag=3) and SAO 123377
(mag=5). A visit to the NGC 6633 cluster web page42 finds six VRIe observations for R.
Cross-reference shows that all six are ∼ 8 mag SAO stars43, however only two (50 & 70) are
in the central region of the cluster. (They could also be found using SAO full.edb.) Stetson
reports BV I data for NGC 6633, however the brightest ten of his stars are ∼ 13 mag,
which is 100× dimmer than the ∼ 8 mag R-mag stars. Thus different frames are required
to properly expose the Stetson standards and the R ‘standards’.

Using the Buil91.edb database, I can find bright standard stars: SAO 085402, SAO 141956,
SAO 145050. These bright SAO stars are themselves LX200 stars.

39http://www.noao.edu/wiyn/obsprog/images/tableB.html
40http://cadcwww.hia.nrc.ca/standards
41VizieR reports R = 5.703, for this star, which may serve as an additional standard. FYI: this star is

also known as: HD 170200 and HR 6928.
42Again: http://obswww.unige.ch/webda/
43These dim SAO stars are not in SAO mag75.edb so I located them using Aladin
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Example 3: Plan for Lunar Month starting 21-June-2005

After Setting xephem for location: SJU Observatory, the new moon date 6-July-2005, and
Local Time 22:00 (10 p.m. — it’s not dark at 9 p.m.), I find and record: UTC Time: 3:00,
Sidereal: 15:43. Because of its larger declination, Upgren 1 has a bit less air mass than
NGC 6633, so it becomes the target. Upgren 1 is not in xephem’s databases, so it must be
added to Favorites following the procedure recorded in using.xephem.txt. A visit to the
Upgren 1 cluster web page44 finds seven stars with VRIc and UBV observations. However
the color index disagreements are of order 0.05, so we can use this as an opportunity to find
the correct values. Using the Landolt83.edb database, I find three neighboring standard
stars with a range of colors: HD 102056 (LX200 star: SAO 81968, bluer than the Upgren
1 stars), HD 106542 (LX200 star: SAO 100009, redder than the Upgren 1 stars), and
HD 107146 (LX200 star: SAO 100038, similar to the Upgren 1 stars). Using the Oja96.edb
database, I find two very close stars with similar colors: BD+35 2356 and BD+34 2338.
(For these dimmer, ∼10 magnitude, stars finder charts are required.) ∗#133 (SAO 63257,
with mag 5 partner 63256) is a neighboring mag 3 star, SAO 44230 is a mag 4 star — both
can help focus and alignment. SAO 63118 is the nearest LX200 star to Upgren 1 (since
Upgren 1 is not in the LX200 catalog of clusters, the final jump must be made based on
RA/dec). All but one of the Upgren 1 seven stars is an SAO star; they are all easy to
identify with Aladin. (FYI: spiral galaxies M94 and M63 might be worth a look.)

Target and standards were fairly close together and near the meridian during the measure-
ments, with airmass varying from 1.01 to 1.14. This was not a sufficient range to detect
airmass correction terms. Increasing airmass dims and reddens stars. As a result calibrated
stars viewed through a larger air mass will have a smaller constant in the color calibration
equation Eq. 4.44. In this case, stars at airmass 1.14 were used to determine the color
calibration equation which was then applied to unknown stars at airmass 1. The result is a
bias in the estimated color of the unknown stars: their actual B − V is likely to be bigger
than that calculated using the calibration equation (i.e., color calibration constant should
be larger at airmass 1). The effect can probably be ignored for ∆airmass∼0.1; Adjusting
for this effect (e.g., determining45 the term B in Eq. 4.37) typically requires measuring stars
with ∆airmass∼1.

Sample Data

The large open cluster IC 4665 was the target for two nights during August 2010. The
results are reported in Figure 4.14.

Report Checklist

1. Write an introductory paragraph describing the basic physics behind this experiment.
For example, why does smaller (even negative) B − V correspond to higher temper-
ature? Why do we expect v − V to be approximately constant? (This manual has

44Again: http://obswww.unige.ch/webda/
45On a following night, stars from IC 4665 were used to provide high airmass data. The results were:

B − V = 1.30(b − v)− .59− .09 sec z, R − I = .85(r − i) + .84− .06 sec z
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Names Constellation Right Ascension Declination Diameter Reddening
(2000) (2000) (arcmin) (mag)

M34, NGC 1039 Per 02h42m05s +42◦45′42” 25 0.07
IC 348 Per 03 44 30 +32 17 00 10 0.93
Collinder 69 Ori 05 35 06 +09 56 00 70 0.10
M35, NGC 2168 Gem 06 09 00 +24 21 00 25 0.26
NGC 2264, cone Mon 06 40 58 +09 53 42 40 0.05
NGC 2301 Mon 06 51 45 +00 27 36 15 0.03
NGC 2420 Gem 07 38 24 +21 34 49 10 0.05
M67, NGC 2682 Cnc 08 51 18 +11 48 00 25 0.06
Upgren 1 (asterism) CVn 12 35 00 +36 18 00 15
M5, NGC 5904 Ser 15 18 33 +02 04 58 23 0.03
IC 4665 Oph 17 46 18 +05 43 00 70 0.17
NGC 6633 Oph 18 27 15 +06 30 30 20 0.18
NGC 6738 (asterism) Aql 19 01 21 +11 36 54 30
NGC 6823 Vul 19 43 12 +23 18 03 12 0.86
NGC 6940 Vul 20 34 32 +28 15 08 31 0.25
M52, NGC 7654 Cas 23 24 33 +61 36 58 13 0.65
NGC 7790 Cas 23 58 24 +61 12 30 17 0.53

Table 4.2: Candidate targets. http://obswww.unige.ch/webda/ and Allen’s Astrophysical
Quantities p. 548 have lists of clusters. An ideal candidate would be within telescope range
(Dec: −5◦ < δ), a size that matches our camera (∼ 15′), have little reddening, and contain
calibrated sources.

Label Name SpType b− v r − i B − V R− I TB (K) TR (K)

16 August 2010

A TYC 424-648-1 G8 1.260 0.198 1.278 0.600 4054 4506
B IC 4665 93 G5 0.922 0.024 0.858 0.447 5083 5089
C TYC 428-1938-1 A 0.644 −0.151 0.505 0.305 6218 5894
D TYC 428-691-1 A3V 0.518 −0.258 0.349 0.210 6900 6680

17 August 2010

A TYC 424-648-1 G8 1.273 0.256 1.252 0.642 4112 4379
B IC 4665 93 G5 0.951 0.007 0.844 0.425 5122 5189
C TYC 428-1938-1 A 0.719 −0.165 0.553 0.258 6038 6252
D TYC 428-691-1 A3V 0.571 −0.189 0.361 0.237 6839 6427

Table 4.3: The instrumental color indices: b− v and r− i of the ‘unknown’ stars in IC 4665
were measured using gaia and converted to standardized color indices: B − V and R − I
using the calibration lines displayed in in Figures 4.14c and 4.14d. Eq. 4.28 (TB) and
Eq. 4.29 (TR) were used to calculate the temperature of the stars from each color index.
The night-to-night variation in the color indices is about .035 mag; almost certainly this
variation is a measurement error not a real change in the stars. Note that this error is
larger than that suggested by the statistical error reported by gaia (∼ 0.005 mag) in the
standard stars. (The dimmer ‘unknown’ stars had statistical errors ∼ 0.01 mag.) The two
temperatures TB and TR do not exactly agree; as discussed in the text systematic errors of
a few percent are to be expected.
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(a) This Digitized Sky Survey image shows the
central ∼ 50′ × 45′ region of the open cluster
IC 4665. The standard stars of J.W. Menzies
and F. Marang (MNRAS, 282, 313–316 (1996))
are labeled along with four ‘unknown’ stars: A,
B, C, D.
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(b) The total color correction in this data set
is approximately 0.1 mag. The deviation about
this color corrections curve is about 0.01 mag.
See Eq. 4.42.
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(c) Calibration of the standardize color index
B−V in terms of the instrumental color index
b − v. See Eq. 4.44. The rms deviation from
this calibration is about 0.014 mag.
B − V = −0.29 + 1.24(b − v)
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(d) Calibration of the standardize color index
R − I in terms of the instrumental color index
r − i. The rms deviation from this calibration
is about 0.01 mag.
R − I = 0.43 + 0.87(r − i)

Figure 4.14: Two frames were used to image the central region of the open cluster IC 4665
on 16-Aug-2010. This region includes 16 standard stars which were used to calibrate the
relationships between standardized color indices and instrumental color indices. Using these
relationships and the measured instrumental color indices, we can determine the standard-
ized color indices of any star in the imaged region. The area was re-imaged the following
night producing two sets of results for the unknown stars as reported in Table 4.3. Note: the
reported ‘rms deviation’ is the square root of WAPP+’s ‘reduced chi-square’ since neither
x or y errors were entered.
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many pages on these topics; your job is condense this into a few sentences and no
equations.) Recall notation: lower case letters (b, v, r, i) represent the ‘instrumental’
magnitudes you get using gaia to analyze your images. Upper case letters (B,V,R, I)
represent the ‘book’ or standard magnitudes.

2. Files containing the reduced frames and object frames for your cluster in FIT format
(usually three repeats for each filter). Leave these in your linux account, but identify
the filenames (and folder) in your notebook. While basic frame characteristics (filter,
exposure time, date/time of exposure, . . . ) are contained in each file, you should also
record this information in your notebook. (The command: fitshead *F.FIT will
display this information from the *F.FIT files in a format that allows easy copy &
paste.)

3. Files containing the flat-field frames you used to flat-field your images. (One for each
filter, but perhaps derived as an average of several frames.) Leave these in your linux
account, but record the filenames and characteristics in your notebook.

4. Hardcopy finder charts, with your target, calibrated stars and unknown stars labeled.
(Similar to Figure 4.14a.) Record an RA/dec grid on your finder charts.

5. xephem datafile containing basic data (RA, Dec, altitude, air mass for each observation
night). Print this out and tape in your lab notebook.

6. Table containing the basic data on your calibrated stars, including standard names
and magnitudes. (Perhaps included in the below file.)

7. A spreadsheet file, reasonably well documented, containing known and instrumental
magnitudes of the standard stars and the instrumental magnitudes of several un-
known stars. Note that usually you will have three full repeats of this data. Cal-
culate instrumental color indices (b − v & r − i). For the standard stars calculate
instrumental−standard magnitude (v − V ) and record the basic statistics (mean,
standard deviation) for those standard stars for each repeat. (Note that aside from a
smallish color correction, we expect v−V to be constant.) Data from this spreadsheet
will be used in the below fits and calculations. Remember to self document all these
calculations before you print out the data table for inclusion in your notebook.

8. Linear fits of B − V vs. instrumental b − v for each of your three sets of standard
star data. You will need—and so your spreadsheet should record—results (A,B, χ2)
for all fits, however print out the fit report only for the fit you consider ‘best’. Make
a hardcopy plot of that ‘best’ B − V vs. instrumental b − v data set with a fitted
line. (Similar to Figure 4.14c.) (General rule: include a hardcopy fit report for every
plot!) FYI: I would make a big concatenated log.txt file containing anything that
might be important in the future. I’ve had to learn the hard way that repeating lost
calculations takes time whereas copy & paste of results is nearly instantaneous.

9. Typically you will have three repeats of (r − i, R − I) datasets. As above, separately
fit each data set and record results (A,B, χ2) for all fits. Print out the fit report only
for the fit you consider ‘best’. Make a hardcopy plot of R − I vs. instrumental r − i
with a fitted line for that ‘best’ fit. (Similar to Figure 4.14d.)

10. Typically you will have three repeats of (B−V, v−V ) datasets. As above, separately
fit each data set and record results (A,B, χ2) for all fits. Print out the fit report only
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for the fit you consider ‘best’. Make a hardcopy plot of v − V vs. known B − V with
a fitted line. (Similar to Figure 4.14b.)

11. Three repeats of: calculation of the B − V of several unknown stars based on the
unknown stars’ b − v and the corresponding linear fit made using standard stars in
the same frames in #8 above. The best estimate of a star’s B − V will of course
be the average of the three repeats for that star, but what should be recorded as
the uncertainty? One option would be the standard deviation of the three values.
However, the typical deviation of the standard stars used in making the fit would
also show expected deviation. When no errors are supplied to WAPP+, the reduced
chi-square it reports is simply the average deviation squared:

reduced χ2 =
1

N − 2

∑

(∆yi)
2 (4.45)

Thus the square root of the reduced chi-square immediately gives you something like
the average (rms) deviation of the points used in the fit. A conservative choice for
uncertainty would be the larger of the above two methods.

12. Analogous to the above, calculation of the R − I of several unknown stars based on
the unknown stars’ r − i and the corresponding linear fit made using standard stars
in the same frames as in #9 above. As above, record an error estimate for the R− I
of those unknown stars.

13. Analogous to the above, calculation of the v − V of several unknown stars based on
the unknown stars’ B−V (which you calculated in #11 above) and the corresponding
linear fit made using standard stars in the same frames in #10 above. Clearly: V =
v − (v − V ) allows three calculations of an unknown star’s V magnitude, but what
should be recorded as an uncertainty in the average value? Again, standard deviation
provides one answer. The error in v−V can be estimated from the square root of the
reduced chi-square, but that error should be combined in quadrature with the error
in v. If we guess that the error in v is comparable to the error in v − V , we end up
with an error estimate in V as

√
2× the square root of the reduced chi-square. Again,

a conservative choice for uncertainty would be the larger of the above two methods.

14. Calculation of the temperature (TB , see Eq. 4.28) of several unknown stars based on
B − V . (See Table 4.3.) Given an error for B − V , the ‘high-low’ method will allow
you to propagate that B − V error into a TB error.

15. Similar to previous item, calculation of the temperature (TR, see Eq. 4.29) with error
of those same stars based on R− I.

16. A properly formatted (units, errors, sig figs) final results table displaying V , B − V ,
R − I, TB, TR (all with errors) for your unknown stars (i.e., somewhat similar to
Table 4.3, but with errors). Are TB and TR consistent? Comment on the uncertainty
in temperature. What do you believe are the major sources of uncertainty?

Other Projects

The lab is aimed at one fairly simple project: measuring stellar magnitudes using in-frame
calibrated stars. However, the techniques discussed here can be applied to a variety of other
projects, some of which are listed below.
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1. Imaging of extended objects (galaxies, nebulae, planets,. . . )

2. Orbit determination of Solar System objects (moons, comets, asteroids,. . . )

3. Magnitude as a function of time

(a) Pulsing stars: Delta Scuti (http://www.astro.univie.ac.at/~dsn/), RR Lyrae,
Cepheids

(b) Cataclysmic variables (http://cba.phys.columbia.edu/)

(c) Eclipsing binaries (http://www.rollinghillsobs.org/)

(d) Novae and supernovae

(e) Rotation period of an asteroid

(f) American Association of Variable Star Observers (www.aavso.org) projects

4. Careful determination of any significant parameter of the telescope system (e.g., S/N
issues, atmospheric extinction, color corrections, tracking, . . . )
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Appendix: Available Sloan Filters: g′r′i′

The Sloan Digital Sky Survey is an ambitious project to deeply image and reduce a large
fraction of the sky. The imaging is done in 5 new filters46 u′g′r′i′z′; our camera has available
the central filters: g′r′i′. Figure 4.15 displays the characteristics of these filters.

Most any deeply exposed frame in the region imaged by SDSS will include stars47 with
cataloged48 photometry accurate to approximately ±.03m. While this error is ∼ 10× larger
than the usual UBVRI standard stars, it is adequate for this lab. Unfortunately, many
open clusters are not in the region imaged by SDSS (because the focus of the project is
objects beyond our Galaxy.) These Sloan magnitudes are based on the ABν system rather
than the Vega system. Instead of the star Vega defining magnitude=0, it is intended that,
for each filter, magnitude=0 corresponds to Fν = 3631 Jy. The results are not hugely
different from Vega-based systems: g = −.08, g − r = −0.25, r − i = −0.23 for Vega.

Various transformations of BV RI ⇐⇒ g′r′i′ for normal stars have been published49, I
reproduce a few of these results below:

B − g = 0.313(g − r) + 0.219 (4.46)

V − g = −0.565(g − r)− 0.016 (4.47)

R− r = −0.153(r − i)− 0.117 (4.48)

i− I = 0.247(R − I) + 0.329 (4.49)

r − i = 1.007(R − I)− 0.236 (4.50)
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Figure 4.15: The characteristics of the Sloan filters: g′ (green), r′ (red), i′ (infrared) from
the Gemini Observatory: http://www.gemini.edu and Annual Review Astronomy & As-
trophysics (2005, Bessell)

46Fukugita, M., Ichikawa, T., Gunn, J. E., et al. 1996 AJ, 111, 1748
47The brightest stars recorded will have mag=14, which in the context of our telescope, are dim. For r′

and i′ use exposure times ≥ 120 s. For g′ use exposure times ≥ 300 s.
48http://www.sdss.org/
49Jordi, K.; Grebel, E. K.; Ammon, K. A&A 460 339 (arXiv:astro-ph/0609121)
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(a) Calibration of the standardize color index
g − r in terms of the instrumental color index
gg− rr. See Eq. 4.44. The rms deviation from
this calibration is about 0.03 mag.
g − r = −0.29 + 1.03(gg − rr)
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(b) Calibration of the standardize color index
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rr−ii. The rms deviation from this calibration
is about 0.015 mag.
r − i = 0.73 + 1.14(rr − ii)

Figure 4.16: Two identical frames (taken 16-Aug-2010) of the central region of the open
cluster NGC 6791 were used to calibrate the relationships between standardized color indices
and instrumental color indices . This region includes 12 standard stars (BV RIgri).

Appendix: ST-7E Camera

In June 2009 we ‘retired’ the old but fully functional SBIG ST-7E camera. I’ve dumped the
specifications for this camera in this Appendix as it is possible that it might be returned
to service. Flaws in the CCD are most evident in the bias frame50. Measurements on our
CCD shows that the difference between two bias frames shows an approximately normal
distribution (aside from the flaws) with a standard deviation ∼ 6 ADU. Also note that the
system artificially introduces an offset of 100 into each pixel, so 2

3 of the pixels in a bias
frame are expected in the range 100± 6 ADU. The ST-7 uses a thermoelectric cooler which
can cool the CCD ∼ 30◦C below ambient temperature, reducing the dark currents by about
a factor of 10. The resulting dark currents are not negligible for exposures longer than a
few minutes.

50Our CCD has a flaw at pixel (592, 194) which affects the entire 592 column
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Telescope Meade LX200
aperture 12”

focal ratio f/10
focal length 120”

Focal Reducer Meade f/3.3 FR/FF
effective f 50”

Filter Wheel SBIG CFW-8A
Camera SBIG ST-7E ABG

pixels 765× 510
image 18′ × 12′

scale 1.45”/pixel

CCD Kodak KAF-0401E
pixel 9 µm× 9 µm

full-well ∼ 50, 000 e−/pixel
read noise 15 e− rms

gain 2.3 e−/ADU

λ Quantum Efficiency
.65 µm 60%
.55 µm 50%
.45 µm 40%
.40 µm 30%

Table 4.4: Older CCD photometry equipment available at the SJU observatory. Note:
When combined with a Celestron f/6.3 FR/FF this camera yielded 0.97”/pixel; when used
on the 10” Meade telescope without any FR/FF it yielded 1.07”/pixel.

The large open cluster IC 4665 was the target for two nights during August 2005. The
results are reported in Figures 4.19 and 4.20.

During the first night an overlapping mosaic of five frames was used to image the central
region of the cluster. During a 2 hour period BV RI frames were taken at each pointing.
(During this time the air mass to IC 4665 changed from 1.30 to 1.46, but the data show
no sign of a change in the transparency of the atmosphere, so no air mass corrections were
applied.) Dome flat-field frames (taken 12 hours earlier) were used to produce reduced
frames. gaia was used to measure the instrumental magnitude of 18 standard stars and
three ‘unknown’ stars. The magnitudes were pasted into a gnumeric spreadsheet which
was used to calculate the color indices: b − v and r − i. (Since overlapping fields were
used typically a standard star appeared in a couple of frames. When this occurred average
instrumental color indices were used.) A calibrating line relating the standard stars’ known
B − V and the measured b− v was fit using regression in gnumeric. An identical process
was used to find the relationship between R − I and r − i. The results are displayed in
Figures 4.19c and 4.19d. Using these relationships and the measured instrumental color
indices, we can determine the standardized color indices of any star in the imaged region.
As shown in Table 4.5, Eq. 4.28 or Eq. 4.29 can then be used to find the temperature of
each ‘unknown’ star.

During the second night six (generally not overlapping) frames were selected with the aim
of capturing a diverse (hot and cool) set of standard stars. The data collected during this
night did show a change in the transparency of the atmosphere (there was a larger variation
in air mass: 1.32 to 1.63; see Figure 4.20a), so air mass corrections were applied.
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Figure 4.17: Below ∼ 30, 000 ADU (12 second exposure) the response of our CCD seems to
be linear, with saturation quite evident in the 16 second exposure. In fact, the CCD should
not be trusted to be linear above ∼ 25, 000 ADU.
The linear fit may look good, but it is in fact not great: reduced χ2=8. Systematic error
in the shutter speed control is probably a problem for the short exposures. (Elimination of
the two shortest exposures results in a reduced χ2=1.6.) Also note that the y intercept is
not exactly zero: with this camera zero-time exposures are designed to produce an output
of about 100 ADU.

Label Name SpType b− v r − i B − V R− I TB (K) TR (K)

A BD+05 3486 A2 0.404 −0.708 0.2822 0.1826 7255 6966
B GSC 00428-00981 G5 0.833 −0.387 0.8399 0.4625 5133 5015
C TYC 424-517-1 K5 1.047 −0.151 1.1181 0.6683 4421 4306

Table 4.5: The instrumental color indices: b− v and r− i of the ‘unknown’ stars in IC 4665
were measured using gaia and converted to standardized color indices: B − V and R − I
using the calibration lines displayed in in Figures 4.19c and 4.19d. Eq. 4.28 (TB) and
Eq. 4.29 (TR) were used to calculate the temperature of the stars from each color index.
The two temperatures do not exactly agree; as discussed in the text systematic errors of a
few percent are to be expected.
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(d) While it is more evident in this low count
data, there is always deviation in counts. While
we can subtract the average dark charge, devi-
ations from the average produce ‘noise’ in our
images. Reducing the temperature reduces this
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Figure 4.18: Dark frames are ‘exposures’ with the shutter closed. The source of these
counts is not starlight, rather a thermally induced current allows charge to accumulate in
each pixel. This ‘dark current’ can be exceptionally large in ‘hot pixels’.
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(a) This Digitized Sky Survey image shows the
central ∼ 50′ × 25′ region of the open cluster
IC 4665. The standard stars of J.W. Menzies
and F. Marang (MNRAS, 282, 313–316 (1996))
are labeled along with three ‘unknown’ stars:
A, B, C.
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(b) There is little evidence for a significant
color correction in this data set. See Eq. 4.42.
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B−V in terms of the instrumental color index
b− v. See Eq. 4.44.
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Figure 4.19: An overlapping mosaic of five frames was used to image the central region of the
open cluster IC 4665. This region includes 18 standard stars which were used to calibrate
the relationships between standardized color indices and instrumental color indices. Using
these relationships and the measured instrumental color indices, we can determine the
standardized color indices of any star in the imaged region.
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Figure 4.20: Six frames were used to image 22 standard stars in the open cluster IC 4665.
The selected stars have a wide variation in color in order to to achieve robust color cali-
brations. During the 2+ hours of data collection the air mass increased from 1.32 to 1.63
and the resulting increase in atmospheric absorption increased (dimmed) B,V,R, and I
magnitudes in proportion to the air mass (see Figure 4.20a).
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5: Thermionic Emission

What Leon [Cooper] did . . . was to make a brilliant oversimplification which
allowed its essential nature to be comprehended immediately. This process of
“model-building”, essentially that of discarding all but essentials and focusing
on a model simple enough to do the job but not too hard to see all the way
through, is possibly the least understood — and often the most dangerous —
of all the functions of a theoretical physicist. . . Actually, in almost every case
where I have been really successful it has been by dint of discarding almost all
of the apparently relevant features of reality in order to create a “model” which
has the two almost incompatible features:

(1) enough simplicity to be solvable, or at least understandable;

(2) enough complexity left to be interesting, in the sense that the remaining
complexity actually contains some essential features which mimic the actual
behavior of the real world, preferably in one of its as yet unexplained aspects.

Philip W. Anderson (1977 Nobel Laureate) More and Different: notes from a
thoughtful curmudgeon (2011) p. 37

Purpose

While we think of quantum mechanics being best demonstrated in processes that show
discontinuous change, historically quantum mechanics was first revealed in systems where
a large number of particles washed out the jumps: blackbody radiation and thermionic
emission. In this lab you will investigate these two phenomena in addition to classical
space-charge limited electron emission: Child’s Law.

Introduction

Metals, as demonstrated by their ability to conduct an electric current, contain mobile
electrons. (Most electrons in metals, particularly the “core” electrons closest to the nucleus,
are tightly bound to individual atoms; it is only the outermost “valence” electrons that are
somewhat “free”.) These free electrons are generally confined to the bulk of the metal. As
you learned in E&M, an electron attempting to leave a conductor experiences a strong force
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Figure 5.1: A planar cathode and a planar anode are separated by a distance b. A positive
potential difference VA attracts electrons from the cathode to the anode, so the speed of the
electrons v(x) increases as they approach the anode. The moving electrons constitute an
electric current from anode to cathode. The resulting steady current density is called JA.

attracting it back towards the conductor due to an image charge:

Fx = − e2

4πǫ0(2x)2
(5.1)

where x is the distance the electron is from the interface and e is the absolute value of the
charge on an electron. Of course, inside the metal the electric field is zero so an electron
there experiences zero (average) force. You can think of these valence electrons as bouncing
around inside a box whose “walls” are provided by the image-charge force. (Odd to think:
the “walls” are non-material force fields; the “inside” of the box is filled with solid metal.)
Since temperature is a measure of random kinetic energy, if we increase the temperature of
the metal, the electrons will be moving faster and some will have enough energy to overcome
the image-charge force (which after all becomes arbitrarily small at large distances from the
interface) and escape. This is electron “evaporation”. The higher the temperature the
larger the current of escaping electrons. This temperature induced electron flow is called
thermionic emission. Starting in 1901, Owen Richardson studied this phenomenon and in
1929 he received the Nobel prize in Physics for his work.

A hot wire will be surrounded by evaporated electrons. An external electric force can
pull these electrons away from the wire — the larger the electric force, the larger the
resulting current of electrons. The precise relationship between the voltage and the resulting
current flow is called Child’s law1 (or the Child-Langmuir law, including Langmuir who
independently discovered it while working at G.E.). In this experiment you will measure
both Child’s Law and the Richardson Effect.

Child’s Law

Consider a planar interface between a metal (x < 0) and “vacuum” (x > 0). Vacuum is
in quotes because this region will contain escaped electrons—a ‘space charge’—rather than

1Clement Dexter Child (1868–1933) Born: Madison, Ohio, A.B. Rochester, Ph.D. Cornell
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being totally empty2. The number of electrons per volume (i.e., the number density) is
denoted by n.

In this experiment, the metal will be heated (i.e., its a ‘hot cathode’ or filament) which will
result in a supply of electrons ‘evaporated’ from the metal into the vacuum. An additional
conducting sheet (the anode) is located at x = b. A positive potential difference, VA,
between the cathode and the anode plane provides a force pulling these electrons from the
vicinity of the cathode towards the anode. The result is a stream of moving electrons (a
current); the number density n(x) and speed v(x) of these electrons will depend on location,
x, between the plates. The negatively charged electrons moving to the right constitute a
steady electric current density to the left, i.e., a steady conventional electric current from
the anode to the cathode:

J = −en(x)v(x) = −JA (5.2)

Since the electrons leave the metal with (nearly) zero speed at zero potential, we can
calculate their speed along the path to the anode using conservation of energy:

1

2
mv2 − eV (x) = 0 (5.3)

v =

√

2e

m
V (x) (5.4)

where V (x) is the potential difference (“voltage”) at x and m is the mass of an electron.
Because the accelerating electrons constitute a steady current (i.e., JA doesn’t depend
on position), n(x) must decrease as the electrons speed toward the anode. The varying
space charge density affects the electric potential in the “vacuum” according to Poisson’s
equation3:

∂2V

∂x2
= −ρ(x)

ǫ0
=
en(x)

ǫ0
(5.5)

Putting these pieces together with have the differential equation:

d2V

dx2
=

JA
ǫ0v(x)

=
JA

ǫ0

√

2e
m V (x)

(5.6)

Since the electric field will be zero at the interface, we have a pair of initial conditions:

∂V

∂x

∣

∣

∣

∣

x=0

= 0 (5.7)

V |x=0 = 0 (5.8)

This differential equation looks a bit like Newton’s second law:

d2x

dt2
=

1

m
F (x(t)) (5.9)

as you can see if in Newton’s second law you substitute:

t −→ x

x(t) −→ V (x)

1

m
F (x(t)) −→ JA

ǫ0

√

2e
m V (x)

2In fact a perfect vacuum is not possible, so the word “vacuum” actually refers simply to a region with
relatively few particles per volume

3Poisson’s equation is derived in the Appendix to this lab.
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Recall that force problems are often most simply solved using conservation of energy and
that conservation of energy was proved using an integrating factor of dx/dt. If we try the
analogous trick on our voltage problem, we’ll multiply Poisson’s equation by dV/dx:

dV

dx
× d2V

dx2
=

JA

ǫ0

√

2e
m

V − 1

2 × dV

dx
(5.10)

(

1

2

[

dV

dx

]2
)′

=
JA

ǫ0

√

2e
m

(

V
1

2

1
2

)′

(5.11)

1

2

[

dV

dx

]2

=
JA

ǫ0

√

2e
m

V
1

2

1
2

+ constant (5.12)

The initial conditions require the constant to be zero, so

1

2

[

dV

dx

]2

=
JA

ǫ0

√

2e
m

V
1

2

1
2

(5.13)

or

dV

dx
=

√

√

√

√

4JA

ǫ0

√

2e
m

V
1

4 (5.14)

This differential equation is separable:

dV

V
1

4

=

√

√

√

√

4JA

ǫ0

√

2e
m

dx (5.15)

V
3

4

3
4

=

√

√

√

√

4JA

ǫ0

√

2e
m

x (5.16)

where again the initial conditions require the constant of integration to be zero. Finally:

V (x) =





9JA

4ǫ0

√

2e
m





2

3

x
4

3 (5.17)

Of course, V (b) is the anode voltage VA, so we can rearrange this equation to show Child’s
law:

JA =

[

4ǫ0
9b2

√

2e

m

]

V
3

2

A (5.18)

Much of Child’s law is just the result of dimensional analysis, i.e., seeking any possible
dimensionally correct formula for JA. Our differential equation just involves the following
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Figure 5.2: Coaxial cylinders: an inner wire (radius a) and outer cylindrical anode (radius
b), form a vacuum tube diode. The cathode is heated so electron evaporation is possible,
and a potential difference VA attracts electrons from the cathode to the anode. The speed
of the electrons v(r) increases as they approach the anode. The moving electrons constitute
a steady electric current from anode to cathode. Since the same current is spread out over
larger areas, the current density, J , between the cylinders must be proportional to 1/r.

constants with dimensions (units) as shown:

b : L (5.19)

VA :
E

Q
=
ML2/T 2

Q
(5.20)

ǫ0

√

2e

m
≡ k :

Q2

EL

Q
1

2

M
1

2

=
Q

5

2

M
3

2L3/T 2
(5.21)

JA :
Q/T

L2
(5.22)

where the dimensions are: L=length, T=time, M=mass, E=energy, and Q=charge. To
make a dimensionally correct formula for JA, we just eliminate the M dimension which we
can only do with the combination:

VAk
2

3 :
Q

2

3

T
2

3

(5.23)

We can then get the right units for JA with:

(

VAk
2

3

)
3

2

b2
=

k

b2
V

3

2

A :
Q/T

L2
(5.24)

Thus the only possible dimensionally correct formula is

JA ∝ k

b2
V

3

2

A (5.25)

The exact proportionality constant, found from the differential equation, is (as usual) is not
hugely different from 1.
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We have derived Child’s law for the case of infinite parallel plates, but you will be testing
it in (finite length) coaxial cylinders. The inner wire (radius a) is the cathode; the outer

cylinder (radius b) is the anode . Your cylinder with have some length ℓ, but we will below

consider infinite length coaxial cylinders. Note that dimensional considerations require that
the anode current per length should be given by a formula like:

I/ℓ ≡ j ∝ k

b
V

3

2

A (5.26)

although we could have an arbitrary function of the radius ratio: b/a on the right-hand-side.

From Poisson’s equation4 we have:

∇2V =
J

ǫ0v(r)
=

I

2πrℓǫ0v(r)
=

j

2πrǫ0

√

2e
m

V − 1

2 (5.27)

Using the Laplacian in cylindrical coordinates we find:

∂2V

∂r2
+

1

r

∂V

∂r
=

j

2πrǫ0

√

2e
m

V − 1

2 (5.28)

There is no known formula for the solution to this differential equation, but we can make
considerable progress by writing the differential equation in terms of dimensionless quanti-
ties:

r/a = ρ (5.29)

V =





ja

2πǫ0

√

2e
m





2

3

f(ρ) (5.30)

yielding:
∂2f

∂ρ2
+

1

ρ

∂f

∂ρ
= f ′′(ρ) +

1

ρ
f ′(ρ) =

1

ρ
f−

1

2 (5.31)

with initial conditions:

f(1) = 0 (5.32)

f ′(1) = 0 (5.33)

We can numerically solve this differential equation using Mathematica:

NDSolve[{f’’[p]+f’[p]/p==1/(p Sqrt[f[p]])}, f[1]==0, f’[1]==0, {f},{p,1,200}]

It’s actually not quite that simple. The cathode, at ρ = 1, is actually a singular point of
the differential equation (i.e., f ′′(1) = ∞). However the situation very near the cathode is
well approximated by the planar case, where we’ve shown:

V (x) =
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9JA
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x
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3 =





9I
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(5.34)

4Poisson’s equation is derived in the Appendix to this lab.
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Figure 5.3: The plot on the left displays the dimensionless voltage f obtained by numerical
solution to the differential equation. The plot on the right compares various approximations
for f to this numerical solution.

So, near the cathode (i.e., ρ slightly larger than 1):

f(ρ) ≈
[

9

4

]
2

3

(ρ− 1)
4

3 (5.35)

We can use this approximation to start our numerical differential equation solution at a
non-singular point (like ρ = 1.00001).

Real devices are designed with b/a = ρanode ≫ 1. The behavior of f for large ρ can be
determined by finding constants A and α for which f = Aρα is a solution to the differential
equation. One finds:

f =

(

9

4
ρ

)
2

3

(5.36)

A useful approximation for the range: 100 < b/a < 1000 is:

f =

(

9

4
ρ

)
2

3

+ 2 (5.37)

(For example, the device used in lab has b/a = 121.5. For this value, the differential
equation gives f = 44.136; the above approximation gives: f = 44.130.)

We recover Child’s law by rearranging (5.30):

2πǫ0

√

2e
m

a

[

VA
f(b/a)

]
3

2

= j = I/ℓ (5.38)

Note: Langmuir’s original work (Phys. Rev. 22, 347 (1923)) on this subject is expressed in
terms of β where:

β2(ρ) ≡ 4

9

f
3

2

ρ
=







−→
ρ→1 (ρ− 1)2

−→
ρ→∞ 1

(5.39)

So:

8πǫ0ℓ
√

2e
m

9bβ2
V

3

2

A = I (5.40)
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β2 = 1.072 for the device used in lab.

Aside: Ohm’s Law probably seems more ‘normal’ than Child’s law of I ∝ V
3

2 . However,
Ohm’s Law only applies in a particular (but common) situation. What is required is an
electron velocity proportional to the electric field and inversely proportional to the temper-
ature; additionally that electron velocity must be ‘slow’—walking speed—a small fraction
of the electron speed suggested by Maxwell-Boltzmann:

√

kT/m ∼ 70, 000 m/s. We need
a collision frequency that limits that electron acceleration to a small fraction of that ran-
dom speed. That in turn requires a collision cross-section proportional to the temperature.
The resulting mean free path is unrelated to the atomic spacing as it is many times that
spacing. In short, detailed material properties determine resistance, not fundamental con-
stants. Child’s Law is a bit complicated because the electron ‘space charge’ modifies the
applied electric field, but with the material removed, fundamental physics determines the
current. If the electron charge density is small enough the applied electric field will not
be (much) effected by that charge density. That was the case in J.J. Thomson’s classical
(1897) measurement of e/m in cathode ray tubes. It should be mentioned that J.J. Thom-
son’s discoveries required achieving higher vacuum than others. If you do the Langmuir’s
Probe experiment you will learn that residual gas, when ionized, makes a plasma that will
attenuate (shield) external electric fields.

Richardson’s Law

Most any thermal process is governed by the Boltzmann factor:

exp

(

−∆E

kT

)

= e−∆E/kT (5.41)

where k is the Boltzmann constant. Approximately speaking the Boltzmann factor ex-
presses the relative probability for an event requiring energy ∆E in a system at (absolute)
temperature T . Clearly if ∆E ≫ kT , the probability of the event happening is low. If an
electron requires an energy W (called the work function) to escape from the metal, The
Boltzmann factor suggests that this would happen with relative probability e−W/kT . Thus
you should expect that the current emitted by a heated metal would follow:

I ∼ e−W/kT (5.42)

Clearly you should expect different elements to have different work functions, just as differ-
ent atoms have different ionization potentials. What is surprising is that the proportionality
factor in the above equation includes a universal constant — that is, a constant that just de-
pends on the properties of electrons (and, most importantly, Planck’s constant, h) and does
not depend on the type of material. (This situation is similar to that of blackbody radia-
tion, in which photons rather than electrons are leaving a heated body, which was Planck’s
topic in discovering his constant. We will take up this topic on page 121.) Thermionic
emission probes the quantum state of the electrons statistically, whereas the photoelectric
effect probes much the same physics electron by electron. (The next level problem is to
explain why this universal constant (the Richardson constant, A) in fact does depend a bit
on the material.) To show:

J = AT 2e−W/kT (5.43)
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where

A =
4πemk2

h3
= 1.2× 106A/m2K2 (5.44)

Quantum Theory: Free Electron Gas

Instead of thinking about electron particles bouncing around inside a box, de Broglie invites
us to consider standing waves of electron probability amplitude:

ψ = N exp(ikxx) exp(ikyy) exp(ikzz) = Neik·r (5.45)

Recall5 that vector ~k is the momentum, p = mv, of the electron and ~ = h/2π. Periodic
boundary conditions on the box (which we take to be a cube with one corner at the origin
and the diagonally opposite corner at the point r = (L,L,L)) require each component ki
to satisfy:

ki =
2π ni
L

(5.46)

where each ni is an integer. Thus each wave function is specified by a triplet of integers: n =
(nx, ny, nz), the n-vector. Applying Schrödinger’s equation, we find that this wavefunction
has energy:

E(n) =
~
2k2

2m
=

(2π~)2n2

2mL2
=

(2π~)2(n2x + n2y + n2z)

2mL2
(5.47)

Notice that there is a definite relationship between the velocity vector of the electron and
the n-vector.

v =
2π~

mL
n (5.48)

Another way of saying the same thing is that allowed quantum-state velocities form a cubic
lattice with cube-side 2π~/mL. The number of states with electron velocities in some
specified region (for example a velocity-space parallelepiped with sides: ∆vx∆vy∆vz) can
be found from the number of 2π~/mL sided cubes that fit into the region, which is the
volume of that velocity-space region divided by (2π~/mL)3. Hence:

number of states with velocity between v and v +∆v =
∆vx∆vy∆vz
(2π~/mL)3

(5.49)

number of states per volume with velocity between v and v +∆v =
∆vx∆vy∆vz
(2π~/m)3

=
( m

2π~

)3
∆vx∆vy∆vz = N∆vx∆vy∆vz (5.50)

where N is the (constant) density of states in velocity space.

Quantum Theory: Fermi Energy

Fermions (half-integer spin particles), in contrast to bosons (integer spin particles), cannot
group together. Since the electron is “spin 1

2”, each of the above states can hold at most 2
electrons: one spin up and one spin down. The probability that a particular fermion state

5For a review see: http://britneyspears.ac/physics/dos/dos.htm
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Figure 5.4: Electrons in the metal experience a constant confining potential of depth U .
Possible quantum mechanical states for these electrons are displayed as horizontal lines.
Electrons fill all the available states up to the Fermi energy, EF . The work function, W ,
is defined at the minimum energy needed to remove an electron from the metal. As shown
above: W = U − EF .

with energy E will be occupied is given by a generalization of the Boltzmann factor called
Fermi-Dirac statistics:

f(E) =
1

1 + exp
(

E−EF

kT

) (5.51)

where EF is called the Fermi energy. The Fermi energy is basically a disguise for the number
of electrons, as, approximately speaking, it is the dividing line between occupied states and
unoccupied states. (If the Fermi energy is high, there must be lots of occupied states and
hence lots of electrons.) Note that if E ≫ EF , the exponential factor is huge and we can
neglect the “+1” in the denominator so

f(E) ≈ exp

(

− E − EF

kT

)

(5.52)

that is, if E ≫ EF Fermi-Dirac statistics approximate the Boltzmann factor.

Classical Theory: Electron Escape

The density of states combined with the Boltzmann factor gives us the number of free
electrons per unit volume with a particular velocity. In order for an electron to escape
during some time ∆t, it must have vx sufficient to overcome the image-charge barrier and it
must be sufficiently close to the wall. All the electrons with vx >

√

2U/m within a distance
vx∆t, will escape, where U is the depth of the potential well for the electrons. Thus the
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Figure 5.5: Consider just those electrons with some particular x-velocity, vx. In order to
hit the wall during the coming interval ∆t, an electron must be sufficiently close to the
wall: within vx∆t. The number of such electrons that will hit an area A will be equal to
the number of such electrons in the shaded volume (which is the perpendicular extension
of A a distance vx∆t into the volume). Note that many electrons in that volume will not
hit A because of large perpendicular velocities, but there will be matching electrons in
neighboring volumes which will hit A. To find the total number of hits, integrate over all
possible vx.

number of electrons escaping through area A during ∆t is:

∫ ∞
√

2U/m
dvx

∫ ∞

−∞
dvy

∫ ∞

−∞
dvz 2N f(E) Avx∆t

= 2N eEF /kTA∆t

∫ ∞
√

2U/m
e−mv2x/2kT vxdvx

∫ ∞

−∞
e−mv2y/2kTdvy

∫ ∞

−∞
e−mv2z/2kT dvz

=
4πm(kT )2

(2π~)3
A∆t exp

(

−(U − EF )

kT

)

(5.53)

where we have used the Gaussian integral:

∫ ∞

−∞
e−αz2dz =

√

π

α
(5.54)

The electric current density is the electric charge escaping per time per area:

J =
e× number escaping

A∆t
=

4πem(kT )2

h3
exp

(

−W

kT

)

(5.55)

which is Richardson’s equation, with work function W given by U −EF .

Experiment: Richardson’s “Constant” is Material Dependent!

Experimentally it is found that Richardson’s constant depends on the material6. Why?

6This should remind you a bit of the material dependent emissivity, ǫT , for blackbody radiation to be
discussed on page 121.
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Table 5.1: G.E. FP-400 Specifications

Filament (W) length 3.17 cm (1.25”)
Filament diameter 0.013 cm (0.005”)
Anode (Zr coated Ni) I.D. 1.58 cm (0.620”)
Maximum filament voltage 4.75 V
Maximum filament current 2.5 A
Maximum anode voltage 125 V
Maximum anode current 55 mA
Maximum anode dissipation 15 W

4 1

2

Keithley 2400
source−meter

Keithley 2420
source−meter

Keithley 192
 voltmeter

anode

cathode
GND

FP−400

Figure 5.6: Circuit diagram (note tube pin labels) for thermionic emission experiment.

1. Classically reflection requires a turning point (where vx = 0), whereas quantum me-
chanical reflections are possible just due to sharp changes in potential. Quantum
mechanical reflection at the metal boundary was not included in our calculations; we
assumed every energetic electron headed toward the wall went through the wall.

2. The work function depends on temperature (due to, for example, thermal expansion
of the lattice of atoms). If the data analysis assumes it’s constant, the resulting A
will be grossly in error.

3. Surface contamination can affect emission probability. In fact, it was originally
thought that thermionic emission was 100% due to surface contamination. (You can
think of surface contamination as a locally varying work function.)

4. Even in the absence of surface contamination, in typical experiments, the metal is
polycrystalline and different crystal surfaces have different work functions.

Experiment

This experiment involves thermionic emission from the hot tungsten filament of a G.E.
FP-400 vacuum tube.
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Temperature Determination

Often temperature measurement in physics experiments is easy. In the “normal” range of
temperatures there are many types of transducers which convert temperature to an electrical
quantity (e.g., Pt resistance thermometers, thermocouples, thermistors, ICs). However at
the extremes of high and low temperature, measurement becomes tricky. Questions like
“What exactly defines temperature?” must then be answered. This experiment requires
“high” temperatures in a vacuum, so we do not have direct contact with the material whose
temperature we seek. In addition the FP-400 tube was not built by us, so we have limited
direct information about the device.

One common way to measure temperature is by using the temperature dependence of resis-
tance. The resistance of metals is approximately proportional to temperature. Jones and
Langmuir7 have published a table of resistance vs. temperature for tungsten, from which
Kirkman has found an approximating formula:

Tr = 112 + 202x− 1.81x2 (5.56)

where x is the ratio of the hot resistance to that at 293 K.

A problem with this approach is that the measured resistance, Rmeasured, will include both
the resistance of the tungsten8 filament, RW and the wires supporting it in the vacuum tube,
Rsupport. Thus the quantity we seek (tungsten filament resistance, RW ) must be calculated
as the small difference between two numbers:

RW = Rmeasured −Rsupport (5.57)

a situation that produces big relative errors. Additionally, we have no independent way of
measuring Rsupport (we can’t take the tube apart); In the end you will measure Rsupport at
room temperature and then assume it is constant9.

There is a further problem with any measurement of voltage when parts of the system are
at different temperatures: thermally induced emfs (thermocouples). If the ends of the tung-
sten filament are at different temperatures, there will be a voltage induced approximately
proportional to the temperature difference between the two ends. This additional voltage
source confuses the resistance determination. The phenomena can be detected and cor-
rected by reversing the direction of current flow (which reverses the Ohm’s law voltage, but
does not affect the sign of the thermal voltage.) Thermal voltages are generally less than a
mV, and so are negligible once our measured voltages approach one volt.

Another approach is suggested by Jones & Langmuir. In a vacuum the temperature of a
wire carrying a current I is the result of an equilibrium between electrical power dissipated
in the wire and energy lost in the form of radiation. (We assume that energy lost through
conduction — either through the wire-supports or residual air in the “vacuum” — is neg-
ligible.) According to the Stefan-Boltzmann law, the power radiated from the surface of a
hot black-body is given by:

P = σT 4A (5.58)

7GE Rev 30, 310 (1927)
8The chemical symbol for tungsten is W from the German Wolfram
9See “Assuming Away Variation” page 18 in Chapter 0
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(a) The temperature of a tungsten filament as
a function its resistance with an approximating
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(b) The temperature of a tungsten filament as a
function of the current flowing through it with an
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Figure 5.7: From the data of Jones & Langmuir, two ways to determine temperature of a
tungsten filament.

where σ is the Stefan-Boltzmann constant, T is the temperature of the body, and A is the
surface area of the body. (In fact tungsten is not a black-body, so when applied to tungsten
the above should be multiplied by a “fudge factor”, the total emissivity ǫT , about 0.3.)
Using just crude approximations, we equate the electrical power dissipated to the power
radiated:

I2T
ℓ

d2
∼ I2T

ℓ
π
4d

2
∼ I2R = ǫTσT

4πdℓ ∼ T 4dℓ (5.59)

where d is the diameter of the wire and ℓ is the length of the wire. On the right hand side
we’ve assumed that the resistivity of tungsten is proportional to temperature, and on the
left hand side we’ve assumed ǫT doesn’t depend on temperature. We conclude:

I2 ∼ T 3d3 (5.60)

[

I

d
3

2

]
2

3

∼ T (5.61)

Absent the above approximations we can hope that temperature is a function of q ≡ I/d
3

2 .

Once again Jones & Langmuir provide us with calibrating data for this expected relation-
ship. For temperatures 400 K < T < 3000 K, Kirkman finds:

Ti = 117 + 56q0.5 + 0.00036q1.8 (5.62)

Finally, attaining thermal equilibrium10 is a problem that affects most any temperature
measurement. The balance between electrical power in and heat lost is not immediately

10See “Special Problem: Temperature” page 17 in Chapter 0
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achieved. The parts of the system with large heat capacities (particularly the filament sup-
ports and other large structures in the tube), will only gradually approach equilibrium. Thus
“soak” time is required following each jump in heating power. The effect of this “thermal
inertia” is seen in “hysteresis”: temperatures obtained while increasing the temperature
disagree with those found while decreasing the temperature. This will be an important
source of uncertainty.

Hands-on Electrical Measurements

Support Resistance: Rsupport

As shown in Figure 5.6, the tungsten filament (cathode) is powered by a Keithley 2420
source-meter. The filament+support voltage is measured directly at the socket with a
Keithley 192 voltmeter. By combining the current through the filament (measured from
the 2420) with the voltage across the socket (from the 192), the series resistance, Rmeasured =
RW +Rsupport, can be determined. At room temperature, the filament resistance, RW , can
be calculated from the filament geometry (see Table 5.1) and the resistivity of tungsten (W—

the filament material) at room temperature: ρ293 = 5.49 µΩ · cm . (You should calculate:

RW ∼ .1 Ω.) Then Rsupport can be calculated from known quantities:

Rsupport = Rmeasured −RW (5.63)

Because this Rmeasured is ‘small’ (and hence error prone), you will make three distinct
measurements of it. Begin by sourcing 1 mA and then 10 mA into the room temperature
filament (using the 2420), reading the resulting voltages on the 192, and calculating the
corresponding Rmeasured. Follow up those two measurements with a four-terminal resistance
measurement just using the 192. (If Rmeasured is substantially larger than ∼ .2 Ω, confirm
that you have firm, low-resistance contacts between the socket and the tube. Working the
socket-tube contact may be required to find the lowest resistance spot.)

Maximum Filament Current, 2420 Voltage Compliance Limit

Following your determination of Rsupport in a room temperature tube, check out the con-
ditions required to stay just below the tube’s maximum ratings (4.75 V, 2.5 A). Using the
2420, successively source filament currents of 2.0 A, 2.1 A, 2.2 A, . . . to directly determine
the maximum current you can use without exceeding the 4.75 V limit across the tube’s
filament. Note that at just below maximum conditions, the 2420 will probably need to
produce voltages above 4.75 V (because of the resistance of the external wires: the volt-
age drop across the connecting wires is not zero). Record the maximum 2420 voltage and
tube current allowed by the tube’s ratings; you will need these numbers in step #2 of your
computer program.

Data Collection Plan

You will be collecting two types of data at the same time: thermal characteristics of the
filament and the thermionic properties of the tube (anode current/voltage relationship).
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Starting at a filament current of 0.9 A, increase the current flowing through the filament
in steps of 0.1 A to a maximum current (found as described above, about 2.4 A) and then
reverse those steps down to a filament current 1.0 A. The up-sweep in filament current
followed by the down-sweep will allow you to test for hysteresis. At each step in current,
allow the filament to approach thermal equilibrium (wait, say, 15 seconds) and then measure
the voltage across and current through the cathode/anode. Calculate filament temperature
two ways (Equations (5.56) and (5.62)). Average the two to estimate the temperature, and
use half the absolute value of the difference to estimate the uncertainty.

You see above a classic example of systematic error. The temperature is measured two
different ways. Direct application of error propagation formulas to these temperatures
calculated from 6-digit meter values would suggest small uncertainties. However the two
temperatures in fact disagree. If only one method had been used to measure temperature,
we would have badly underestimated the error.

T 4 vs. Power: Testing Stefan-Boltzmann

By conservation of energy we know that the power dumped into the filament (mostly from
electrical heating, but also from other sources like radiation from the room temperature
environment to the filament) should equal the power out of the filament (from black-body
radiation and other factors like conduction down the supports). Thus:

ǫTσAT 4 = I2RW + constant (5.64)

T 4 =
1

ǫTσA
I2RW + constant (5.65)

y = bx+ a (5.66)

A graph of T 4 vs. power should be a straight line from which you will determine ǫT . (Note
that the error in power is quite small, so we have properly used it as an x variable.) In
order to test this relationship you will want to make a file containing the filament power,
T 4 (use the average of the two temperatures: (T 4

i + T 4
r )/2), and the error in T 4 (use half

the difference from the two temperatures: |T 4
i − T 4

r |/2).

IA vs. VA: Testing Child and Richardson

You will collect anode current vs. voltage curves for each different filament (cathode) tem-
perature. Use the Keithley 2400 to sweep the anode voltage logarithmically from 2 V to
120 V. (Note the maximum limits for the anode: 0.055 A or 125 V. Do not exceed ei-
ther!) According to Child’s law, the anode current, IA, should increase in proportion to

V
3

2

A . However, at sufficiently high voltage the current will be limited by the maximum
electron evaporation rate so further increases in VA result in hardly any change in IA—a
current plateau results at a IA given by Richardson’s law. At the maximum filament cur-
rent (corresponding to the maximum filament temperature and evaporation rate), plateau
formation occurs at very high voltage and you have the longest run of data following Child’s
law. Make a file containing VA, IA, and δIA which you can use to fit to the Child’s law
functional form:

IA = k1 (VA − k2)
3

2 (5.67)
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In addition, you will want to make a big continuous file containing: VA, IA at every temper-
ature tested. The current plateaus can be extracted from this file and fit to the Richardson
relationship:

IA = k1 AT 2 e−k2/T (5.68)

Computer Data Collection

As part of this experiment you will write a computer program to control the experiment.
Plagiarism Warning : like all lab work, this program is to be your own work! Programs
strikingly similar to previous programs will alarm the grader. I understand that this will
often be a difficult and new experience. Please consult with me as you write the program,
and test the program (with tube disconnected!) before attempting a final data-collecting
run.

Your program will control all aspects of data collection. In particular it will:

0. Declare and define all variables.

1. Open (i.e., create integer nicknames—i.e., iunit—for) the enets gpib1 and gpib2.

2. Initialize meters—requires knowing the meter’s gpib address i.e., iadd and the enet’s
iunit the meter is attached to. Get the status of each meter after you have initialized
it.

(a) Each source-meter must be told the maximum voltage and current it may produce
during the experiment. Initialize the 2400 (anode voltage/current) for the tube
maximum ratings. (See Table 5.1)

(b) Initialize the 2420 (filament voltage/current) for the near tube-maximum ratings
found above11. In the following I assume the current maximum is 2.4 A, but it
may be different for your tube.

(c) Initialize the 192 for autorange DC voltage measurements.

3. Open the files:

(a) filament.dat (intended for: If , Vf , Tr, Ti of filament).

(b) stefanB.dat (intended for: power, T 4, δT 4 of filament).

(c) VI.dat (intended for: all VA, IA of anode, with comments (‘!’) for filament
If , Tr, Ti).

(d) child.dat (intended for: VA, IA, δIA of anode at maximum filament current).

(e) child-.dat (like above but intended for a downsweep of anode voltage).

(f) rich.dat (intended for: Tr, Ti, IA — i.e., the estimated temperatures and the
corresponding maximum anode current for Richardson’s Law).

4. Tell the 2420 source-meter to source a filament current of 0.9 A.

5. Let the system sleep for 60 seconds to approach thermal equilibrium.

11See Hands-on Electrical Measurements, p. 123. Recall: the 2420 maximum voltage will need to be a bit
above 4.75 V. If you have not yet completed those measurements, temporarily initialize with 4.75 V.
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6. Do a sequence of measurements where the filament temperature is sequentially in-
creased (i.e., a temperature up-sweep) with filament currents ranging from 0.9 A to
some maximum (e.g., 2.4 A) current in steps of 0.1 A. For each filament current:

(a) Tell the 2420 source-meter to source the filament current (If ).

(b) Let the system sleep for 15 seconds to approach thermal equilibrium.

(c) Request a logarithmic sweep of the anode voltage (controlled by the 2400 source-
meter) from 2 V to 120 V. Receive the resulting arrays: VA and IA.

(d) Turn off the anode voltage.

(e) Repeat (a) thus receiving an updated version of the filament current (it will be
very close to the requested current).

(f) Read the 192 to get the filament voltage (Vf ).

(g) Calculate series resistance Rmeasured = Vf/If ; subtract Rsupport to find RW the
resistance of the hot filament. Finally following Eqs. (5.56), calculate Tr using
x (the ratio of RW to the previously calculated filament resistance at 293 K).
Remark: typically you do not know the numerical value of Rsupport, etc. when you
are writing this code. Simply define needed variables with dummy values to be
replaced when you complete the ‘Hands-on Electrical Measurements’ described
on page 123.

(h) Calculate Ti from Eq. (5.62)

(i) Write a line to the file filament.dat reporting: If , Vf , Tr, Ti.

(j) Write a line to the file stefanB.dat reporting: filament power (RW I
2
f ), T

4, and

δT 4 (see p. 124).

(k) Write a comment line (i.e., starts with ‘!’) to the file VI.dat reporting filament
data: If , Tr, Ti.

(l) Write the anode sweep data (one data-pair per line) in the file VI.dat.

(m) Write a line to the file rich.dat reporting Tr, Ti, IA. Use IA at VA=120 V as the
estimated plateau current. (When the experiment is over, you will need estimate
δIA based on hysteresis, and may need to delete IA values if, for example, the
current did not plateau or if cold emission substantially added to the plateau
current.)

(n) Increment the filament current by 0.1 A and return to (a).

7. Now at the highest filament temperature, collect data for Child’s Law. Begin by re-
peating all the steps (a)–(m) outlined in 6 above using the maximum filament current.
In addition to (l), write the anode sweep data (VA, IA, δIA) in the file child.dat

(one data-triplet per line). In this case, δIA will be automatically calculated from the
manufacturer’s specs: percent+digits, if you use the fortran function eAk2400. Now
check for hysteresis by doing a reverse anode sweep: from 120 V down to 2 V. Write
this reverse anode sweep data (VA, IA, δIA) in the file child-.dat.

8. Do a sequence of measurements where the filament temperature is decreased (i.e., a
temperature down-sweep) by sequentially sourcing filament currents from one step
down from maximum (e.g., 2.3 A) back to 1.0 A. Follow steps (a)–(m) used in the
temperature up-sweep (part 6 above) and then:

(n) decrement the filament current by 0.1 A and return to (a).
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9. Turn off the output of the 2420.

10. Close all files.

Note that the 0.9 A filament current data is just trash collected so the 1.0 A filament current
data is taken on a pre-warmed filament.

Raspberry Pi

As with the previous lab, your computer keyboarding will be done on the department’s linux
PCs. Nevertheless, the actual running of your program (and hence the equipment control
and data collection) will be done by a small (3.4” × 2.2”), inexpensive ($35) Raspberry
Pi computer which also runs a version of linux. The process of sitting at a linux PC but
running and creating programs on the Raspberry Pi is facilitated by having a shared folder.
Run (in a terminal) the command: makeyalow; it will make a symbolic link called 2yalow

which can take you to that shared folder either by the terminal command: cd 2yalow (cd
stands for change directory) or using the usual GUI file browser.

In order to actually run commands on the Raspberry Pi, you need to open a “secure shell”
running on the Raspberry Pi. . . in a terminal type the command ssh rpi0. (The name of
this Raspberry Pi is ‘rpi0;’ note ‘yalow’—in addition to being the name of the Nobel prize
winning FDP Rosalyn Yalow—is the name of the big computer in PE132 which runs the
shared filesystem.) Once on the Raspberry Pi (note the new prompt)—just as you did on
the linux PC— type the commands makeyalow and cd 2yalow to reach the shared folder.

To compile a file (say called myfile.f) of fortran statements on the Raspberry Pi or on
the linux PCs, type forie myfile (note no .f). (FYI Compile: to convert the human
readable fortran statements in myfile.f into a file myfile containing the language the
CPU understands—machine code.) To execute the resulting sequence of machine code
commands (a.k.a. to run), simply type the name of the resulting file: myfile (note no .f).

Note that the CPU of our linux PCs is quite different from the CPU of Raspberry Pis, so
compiling on the PC—while useful for finding errors—does not produce machine code that
the Raspberry Pi understands.

Observations

While the computer collects the data observe the light from the filament. (There is a 1
16”

diameter hole in the anode allowing light from the mid-point of the filament to escape.)
Initially the filament will not appear to be incandescent (i.e., not a source of light at all:
dark) so it may help to turn off the lab lights to better observe the beginning of visible
incandescence. According to the Stefan-Boltzmann law the light energy radiated depends
on T 4, so small changes in T produce big changes in light intensity. In addition to changes
in light intensity, you should look for the more subtle change in light color: from a dull red
to a brilliant yellow. Record your observations! At what filament current/temperature did
you first see the filament producing light?
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Figure 5.8: The temperature dependence of thermionic emission in a FP-400 vacuum tube.
Each curve shows the anode current-voltage relationship at a particular filament temper-
ature. At high filament temperatures and low anode voltages the anode current follows
Child’s law: an upward sloping straight line on this log-log plot. At sufficiently high anode
voltage, the filament current plateaus at a value given by Richardson’s law. At low filament
temperatures and high anode voltages, “cold emission” may augment (distort) the plateau.

Data Analysis

Beginnings

The main result of this experiment is a plot similar to Figure 5.8 showing the anode current-
voltage relationship at various filament temperatures. Production of such a multi-plot is a
bit complex, and you will almost certainly need further detailed instructions12 from your
instructor on using the program Nplot, so delay making this plot until your instructor is
available. Each curve in the multi-plot represents a anode voltage sweep, which for small
anode voltage VA follows the nearly power-law relationship discovered by Child (power
laws look linear in the log-log plot) but then levels out (‘plateaus’) at a current given by
Richardson’s Law. The curves are paired: each filament current was done once when the
temperature was being increase and once when the temperature was being decreased.

The first check you should make is: is a proper plateau achieved for every filament current?
If the high-temperature V I sweep reaches a plateau, then Child’s Law will not apply at
high VA so child.dat will require editing; if it does not reach a plateau, then Richardson’s
Law does not apply to that sweep so rich.dat will require editing.

12Documentation on the plot program can be found in Appendix B. It is also worth noting that since a
log-log plot is requested, negative values—commonly negative anode currents—must be removed from the
file VI.dat. As a general rule: do not destroy your original data, in this case simply rename the edited file
something like VI2.dat.
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The anode current, IA at the maximum anode voltage VA = 120 V has been stored in the file
rich.dat as a candidate plateau along with temperature estimates Tr and Ti (all currently
lacking error estimates). While the actual Richardson’s Law relationship (Eq. 5.69) is not
on the list of WAPP+functions, we can arrange a quick but useful approximation.

According to Richardson’s law, these plateau currents should satisfy:

IA = AAT 2 e−W/kT = k1 AT 2 e−k2/T (5.69)

where A is the tungsten filament surface area, k2 = W/k relates to the work function W ,
and k1 is just a renaming of the Richardson constant A. Clearly the largest (if unknown)
error is in T , so the standard approach would be to put T on the y-axis and I on the
x-axis: the opposite of what is implied by the above equation. However, we can’t simply
solve the above equation for T without some approximations. It turns out that e−k2/T is
the significant factor in the above equation, so we start by ignoring the T 2 and assume:

I = K e−k2/T (5.70)

for some constant K. Now if we take loge of both sides:

log(I/K) = −k2
1

T
(5.71)

or
1

T
= − 1

k2
log(I/K) (5.72)

This equation is now in a form13 known to WAPP+. Thus you can quickly WAPP+(I, T )
data from rich.dat (of course still lacking x-errors and y-errors) and find an approximating
curve. Retain hardcopy14 of the fit results. Request (and hardcopy) a linearized plot of
your data with x-scale: log and y-scale: inverse as in Fig. 5.9. This should allow you to
check for aberrant data points. (Usually the high temperature curve has not plateaued, and
so the high temperature data point must be removed. Occasionally the low temperature
data points are also aberrant.)

But what should be used for T ?. . . You have two values (Ti and Tr) and they are not the
same! This is of course the result of systematic error: the two supplied formulas (calibra-
tions) for T produce different results. In this unhappy (but not uncommon) situation, we
often end up just averaging the two values and use error bars that are large enough to
encompass both values (i.e., δT = |Ti − Tr|/2). Of course, fits using either Ti or Tr will
produce parameters (likeW ) that differ. Given that we have no reason to prefer one version
of temperature of the other, the (unhappy) solution is just to use an error that can encom-
pass either temperature measure. So you will fit/plot once with Ti and then again with Tr.
The systematically different temperature scales will result in different fit parameters— in
particular you will get an upper-limit and lower-limit for the work function from the two
B values of your two fits, as k2 = −1/B and W = k2k. The work function is an atomic
quantity, and it is usually expressed in the atomic scale unit eV15 so it will be helpful to
find the Boltzmann constant k in terms of eV rather than joules. δW can then be taken as
half the difference between these two extreme values. (Note an oddity: you’ve determined

13Inverse-Natural Log: 1/y = B log(x/A), where W = k2k = −k/B
14You should retain a hard and/or soft copy of every successful fit. Hardcopy ends up taped into your lab

notebook. I also retain softcopy by copy&paste into a generic text file log.txt using kwrite.
151 eV = 1.6022 × 10−19 J is the energy an electron gains in going through a potential difference of 1 V.
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Figure 5.9: Simplified analysis suggests Richardson’s Law data can be fit to the Inverse-
Natural Log relationship of Eq. 5.72. The filled-square points use y = Ti, the unfilled-square
points use y = Tr. Systematically different temperature measurements yield systematically
different B (slopes in the above plot) and hence systematically different work functions
W = −k/B. Note the inexact pairing of the data due to temperature hysteresis. Note that
the rightmost datapoint is aberrant: a non-plateau.

a value for δW , but not yet found the best value for W .) Take this opportunity to delete
the aberrant data from rich.dat (and, say, save as rich2.dat).

Pause for a moment and consider: if you had not measured T using two different methods
you would have only one estimate for W . If you used data-scatter to estimate δW (e.g.,
using WAPP+ δB) the actual value ofW would lie outside your error bars. This is of course
because both of the temperature measures are systematically wrong (consistently wrong by
some factor). By measuring T two different ways this systematic error was detected and an
appropriate (much larger value) for δW was determined. Reduction in δW would require a
better method to measure temperature.

We can also a quick but useful check of the Child’s law data using WAPP+. Once again the
proper functional form (Eq 5.76) is not available in WAPP+, but a power law is somewhat
similar. In this case the files child.dat and child-.dat include a y-error estimate based
on the k2400 specifications. (In fact these book-based errors very much underestimate the
deviations you will experience: expect a horrendous reduced χ2). Check that WAPP+’s B
is nearly 1.5, record the A value (you will need it as an initial estimate for k1 when you do
the fit to the proper functional form), make a log-log plot (no hardcopy needed!) to check
for aberrations (like a plateau at large VA).

Finally, the Stefan-Boltzmann Law can be properly evaluated using WAPP+, as a line is
the expected function. The file stefanB.dat has the required data with y-errors (x-errors
are small). Produce a plot (and hardcopy fit report) similar to Fig. 5.10. I expect you’ll find
a small reduced χ2 due to the large systematic error in temperature, so a bit of additional
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Figure 5.10: A test of the Stefan-Boltzmann law: that power radiated is proportional to
T 4. Note that the fit line hits well within each error bar. The χ2 for this fit will be
“small”. Evidently the average temperature is a better measure of temperature than you
might expect from the deviations between Ti and Tr.

work will be required to estimate δǫT .

Stefan-Boltzmann Law II

You should have already checked for an approximately linear relationship between electrical
power in and T 4:

Power = ǫTσAT 4 (5.73)

and found a reduced χ2 indicative of large systematic uncertainty in temperature. We now
seek an estimate for ǫT (with error) at the highest temperature. The best value for ǫT can be
found by plugging into the above equation our best estimates for T 4 and the measured power
(found in the file stefanB.dat), and A (calculated based on the dimensions recorded in
Table 5.1). Alternatively ǫT could be calculated based on slope as suggested by Eq. 5.66. But
how should we incorporate the large systematic errors in T 4 and the unknown systematic
error in A? For the surface area A, all we know is the ‘book’ values for the dimensions of
the filament. Based on the sigfigs in the reported values, I estimate:

δA
A ≈ 10% (5.74)

(mostly due to the filament diameter, where a ‘small’ uncertainty leads to a large fractional
uncertainty). We can then use the ‘high-low’ method or use the proper formula in Appendix
E to estimate δǫT , given the range of possible values for T 4 and A (assume the error in
power is negligible).
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Figure 5.11: A plot of the space-charge limited thermionic emission in a FP-400 vacuum
tube (Child’s law). The data was taken at a filament current of 2.4 A. Every other data
point has been eliminated so the fit line is not obscured. Note that the fit line systematically
misses the data, sometimes a bit high others a bit low. The measurement errors are tiny, so
these small misses do result in a “too-large” χ2. Nevertheless, the law provides an excellent
summary of the data over a huge range of variation.

Child’s Law II

At sufficiently high filament temperature (and low anode voltage), Child’s law governs the
anode current-voltage relationship:

IA =
8πǫ0ℓ

√

2e
m

9bβ2
V

3

2

A (5.75)

(see vicinity of Eq. 5.40, page 115, for a definition of symbols) At the highest filament
temperature (i.e., the highest filament current ∼2.4 A) you have saved the (VA, IA, δIA)
data in the file child.dat. Now fit16 this data to the functional form:

IA = k1 (VA − k2)
3

2 (5.76)

(where k2 represents a small offset between ground and the actual average voltage of the
filament). The program fit will require an initial guess for k1; use the WAPP+value for A
found above. (In fit the default initial guess for parameters is zero; that is reasonable for
k2.) Do not be surprised if you get a huge reduced χ2. Find an estimate for k1 error either
by a ‘fudged fit’ or a bootstrap. As always retain a copy of your full fit report, including the
covariance matrix. Plot your data and best-fit function using the program plot, producing
a result similar to Fig. 5.11.

16The program fit is documented in Appendix A. Note that plotting and fitting now are handled by two
different programs, not a combined program like WAPP

+.



Thermionic Emission 133

160018002000220024002600

.01

.001

1.E–04

1.E–05

Richardson’s Law

Temperature (K)

A
no

de
 C

ur
re

nt
 (

A
)

Figure 5.12: A Richardson Plot of thermionic emission in a FP-400 vacuum tube. Each
data point displays the plateau anode current at a particular filament temperature. The
curve through the data fits for the work function; the slightly steeper curve uses the book
value for the work function.

Follow exactly the same process for the downsweep data in the file child-.dat. Often you
will find that the k1 values for the two sweeps differ by more than computer-based value of
δk1. Systematic error (here a type of hysteresis) is responsible. Note that the usual reduced
χ2 alerts us to a problem, but measuring twice (in different ways) provides an estimate
(perhaps still an under-estimate) for δk1: half the difference between the two values of k1.

We expect that

k1 =
8πǫ0ℓ

√

2e
m

9bβ2
(5.77)

so using the tube dimensions in Table 5.1, the electron charge-mass ratio e/m can be
calculated. Since the FP-400 is a finite length cylinder (rather than the infinite cylinder
discussed in our theory) use the effective length17 = 0.7 × ℓ as the length of the cylinder.
But what can we use as errors for the ‘book’ values for b and ℓ? Thermal expansion of the
filament should, by itself, change ℓ by about 1% (notice the spring-tensioned support for
the filament in the FP-400). Based on the sigfigs in the reported values, I estimate:

δ(b/ℓ)

(b/ℓ)
≈ 3% (5.78)

Calculate e/m and its error. Compare to the ‘known’ value (citation required!).

17This effective length corrects for current loss through the ends of the cylinder under space-charge sit-
uations. A smaller correction should be applied when large anode voltages are designed to sweep up all
evaporated electrons, i.e., for Richardson’s Law, where 90% electron collection seems appropriate. The
details of handling such corrections to theory may be found in reference 1.
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Richardson-Dushman Law II

You should have already checked for an approximately exponential-inverse relationship be-
tween T and IA, edited out aberrant data (e.g., not yet plateaued), and have a range of
possible values (due to systematic error in temperature) for k2 in the expected relationship:

IA = k1 AT 2 e−k2/T (5.79)

We now seek a treatment incorporating the hysteresis error in IA and the proper functional
form, to obtain the best possible value for k2. We will need to manipulate18 the data in
rich2.dat to bring together equivalent data from the temperature upsweep and downsweep.
An easy way to get the data into the gnumeric spreadsheet, is to type it to the screen using
the linux command19 cat:

cat rich2.dat

You can then copy and paste20 this data into gnumeric. Our aim to put together data with
the same filament current, i.e., to combine the first line of data with the last; to combine
the second line of data with the next-to-last; etc. This is easily accomplished by typing the
data bottom-to-top to the screen using the linux command21 tac:

tac rich2.dat

The results can be copy and pasted next to the previous data so that the data we aim to
combine (e.g., both If = 1 A) is on the same line. Confirm that the Tis in each row match!
Note: alternatively under ‘Paste Special’ gnumeric has the option to ‘Flip Vertically’.
Warning: a common error is to match the top (trash) If = .9 A with the bottom If = 1 A.
Again: make sure that the Ti of the data you match are nearly identical (i.e., have the same
current). The best estimate for T is the average of the four T s (the two Ti should be
nearly identical); the best estimate for IA is the average of the two IAs; for δIA use half
the difference between the two values of IA (|IA1 − IA2|/2); for δT use the stdev of the
four temperatures. The result of this ‘data reduction’ is half as many data points, but
with a value for δIA based on hysteresis. (The alternative for δIA would be the meter
manufacturer’s specifications, and we know they are way too small from analysis of Child’s
Law.)

Report the relative importance of hysteresis and calibration in temperature uncertainty
determination. For If = 1.2 A record the difference between the two Tr due to hysteresis
and the difference between Tr and Ti which is a temperature calibration uncertainty.

Copy and paste this reduced data into a new file (say, rich3.dat), and fitxy22 it to
Eq. 5.79. (As always retain a copy of the full fit report.) As always for non-WAPP+fits,
you will need initial parameter guesses. From your approximate WAPP+to Eq. 5.72 you
should have an estimate for k2; use the book23 value for Tungsten’s Richardson’s constant:

18This processing could very easily have been done within the program itself. I’ve instead opted to make
the program as simple as possible at a cost of additional ‘by-hand’ processing in a spreadsheet.

19from concatenate—commonly this command is used to combine several files
20Note use of “See two two separators as one”: Alt-e
21clever or what?
22fitxy works much as fit, except it allows errors in both x and y. Be sure to tell the program the

columns you’ve used for x, δx, y, δy using the variables XCOL, XECOL, YCOL, YECOL.
23Blakemore, Solid State Physics, p. 191
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0.72×106 A/m2K2, as an initial guess for k1. (Use the correct units for the surface area A!)
However, not uncommonly your initial guesses will send fitxy to a terrible χ2 minimum.
Try asking fitxy to initially just change k1. After fitxy has improved your guess for k1,
then try adjusting both k1 and k2.

Produce a plot similar to Fig. 5.12; include lines both for your best fit and the ‘book’ values
of k1 and k2.

The work function is an atomic quantity, and it is usually expressed in the atomic scale
unit eV24. Calculate the work function from your value of k2 in joules and eV and compare
to the book24 value of 4.5 eV.

Since our temperatures are so uncertain, particularly at the low end, the best estimate for
the Richardson constant A comes from substituting the book value of the work function and
the plateau (T, IA) measurement for the highest valid filament temperature into Eq. 5.69.
We can then estimate the systematic uncertainty in A by using the ‘high-low’ method of
191 (A+ → I+, T−,A−).

Report Checklist

1. Write an introductory paragraph describing the basic physics behind this experiment.
Explain why higher cathode currents produced ever higher plateaus of anode current.
Explain why higher anode voltages produced higher anode current and why the curves
of Fig. 5.8 seem to bunch up (coincide) on the left hand side.. (This manual has many
pages on these topics; your job is condense this into a few sentences and no equations.)

2. Calculations (no errors) of room temperature RW . Measurements (4-wire ohmmeter
and direct voltage/current) of Rmeasured at room temperature. Calculation of Rsupport.

3. Observations of the light intensity and color as a function of filament temperature.

4. Data files and computer program: Leave them in your linux account. Print out a copy
of your program, the file filament.dat, and the data you used to fit Richardson’s
Law; Tape them into your lab notebook. Document how your Richardson’s Law
data was calculated in your spreadsheet. (I would self-document the spreadsheet,
then File◮Print Area◮Set Print Area to select all the relevant columns, including the
self-documentation of those columns, and then print.)

5. Plots similar to Figures 5.8, 5.12 (with fit curve Eq. 5.68 and also the Richard-
son function using “book” values for k1 and k2), 5.11 (two plots: child.dat and
child-.dat each with fit curve Eq. 5.67), 5.10 (with line Eq. 5.66) and 5.9 (two sep-
arate WAPP+plots one with Tr data and the other with Ti data). Note that Figure 5.8
is complex to produce. Use a file of Nplot commands and feel free to talk to me about
how to go about doing this. Carefully note the use of log and inverse scales (which
requires positive data—edit to achieve this!). Include a fit report for each fit curve.

6. Experimental values (with error range) for: W (in eV) and A. See page 135 for
calculating W , A, and δA; see page 129 for calculation of δW . Experimental values

241 eV = 1.6022 × 10−19 J is the energy an electron gains in going through a potential difference of 1 V.
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(with error range) for: e/m and ǫT . Comments on temperature hysteresis/calibration
(see p. 134).

7. Show the steps connecting Equations (5.28)–(5.30) to Equation (5.31). Show that
f = Aρα is a solution to (5.31) if and only if A and α are as reported in Equation
(5.36). Substitute the ρ → 1 approximation (Eq. 5.35) into the differential equation
(5.31). Show that while we do not have an exact solution to the differential equation,
the singular parts (i.e., those that approach infinity as ρ→ 1) cancel.

8. Make a final results table, recording your numerical results from #6 (with proper
units and sigfigs) adjacent to the corresponding ‘book’ values. Don’t forget to record
your tube’s identifying letter!

Comment: Classical vs. Quantum

I said above that the presence of an ~ in Richardson’s constant shows that the process is
governed by quantum mechanics. It is not quite so simple. The evaporation of water is not
fundamentally different from that of electrons, while the former (due to the larger mass of a
water molecule) is well-approximated by a classical calculation. Classical evaporation can be
calculated much as quantum evaporation using the Maxwell-Boltzmann speed distribution
and the number density (of water molecules) rather than the disguised version of this: Fermi

energy (E
3

2

F ∝ number density). We can write the classical rate in terms of the quantum
with no ~ visible:

classical flux =
4

3
√
π

[

EF

kT

]
3

2

× quantum flux (5.80)

The different temperature dependence25 for the classical flux (T
1

2 e−W/kT vs. T 2e−W/kT )
cannot be detected experimentally: the Boltzmann factor overwhelms all other temperature
dependencies. On the other hand, since EF ≫ kT , the expected classical rate is much larger
than the quantum rate. This played a role in the mistaken idea that thermionic emission
was due to surface contamination: the experimental rate seemed too small to be classical
evaporation. On the other hand a more fruitful interpretation of the “low” rate was that
only a fraction (∼ kT/EF ) of the electrons were thermally active. This connected with
other observations (like the “small” specific heat of the electron gas) and provided a link to
the idea of a degenerate Fermi gas.

Comment: Uncertainty

Inspection of Figures 5.8–5.12 shows that something “funny” is going on. (I can’t say “ab-
normal” or “unusual” as it is neither.) Figure 5.10 shows the unmistakable signs of “small
reduced χ2”: The fitted line goes nearly dead-center through all 30 error bars, never coming
even close to an edge. For error bars sized at one standard deviation (σ), you should expect
total misses of the error bar about 1/3 of the time. In addition recall that each data point

25Saul Dushman ( Phys. Rev. 21, 623–636 (1923)), while working at G.E., provided a general thermody-
namic argument for the T 2 dependence and the universal nature of A. The resulting relationship is therefore
sometimes known as the Richardson-Dushman relationship.
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is really a double: the same filament current was sourced as part of a temperature up-sweep
and as part of a temperature down-sweep. These repeated measurement should also fre-
quently miss by a standard deviation, but here they are so close that the two points often
look like just one. The answer to this puzzle is that the error bars are not displaying sta-
tistical (‘random’) error. Instead the temperature was measured two different ways (Ti and
Tr), and the error bar represented the deviation between these two measurement methods.
When different methods of measurement produce different answers for the same quantity,
we have a textbook example of systematic error (in contrast to statistical error). Notice
that if we had used the statistical deviation of just one measure of temperature, we would
seriously underestimated the error. Furthermore since quite accurately measured electrical
quantities were used to calculate the temperature (via Equation 5.62 or Equation 5.56),
application of the usual error propagation methods would also have produced very small
errors in T . The full range of our uncertainty in temperature is made evident only by
measuring T two different ways. (This is typically how systematic errors are detected.)

Having detected systematic errors, we should seek an explanation. . . In addition to the
problems previously cited (particularly use of book values for filament dimensions and
the problems associated with Rsupport), nonuniform filament temperature due to filament
supports may be the problem. Koller (p. 89) reports the filament temperature 0.5 cm from
a support is reduced by 15% (and of course the effect is greater closer to the support).
Thermionic emission is reduced a similar amount 1.3 cm from a support. Thus the quantity
we are seeking (a filament temperature) does not even exist, so it is hardly surprising that
different measurements give different results. (It turns out the Tr is something like the
average temperature; whereas Ti is something like the central temperature.) These effects
have been investigated, and Koller gives the theory to correct such measurements, but such
considerations are beyond the scope of this experiment.

Figure 5.8 shows the opposite problem, “large reduced χ2”: The fitted line systematically
misses almost every error bar. In this case, the miss might be called “small”, but the error
bar is smaller still. Once again, errors were not calculated statistically (manufacturer’s
specifications were used), so “reduced χ2 = 1” should not really be expected. In this case,
my guess is that the problem is with our simplified theory (we assumed: infinite cylinders,
no random component to the electron velocity [zero electron temperature], uniform filament
[temperature, voltage, emissivity, . . . ], perfect vacuum, no incipient current plateau). We
could of course test these hypotheses by further experiments with different tubes, but such
work is beyond the scope of this experiment. (Indeed you most likely have detected VA-
sweep hysteresis; correction for this dramatically reduces reduced χ2, but not all the way
to ∼ 1.)

Summary: Very large or very small reduced χ2 suggests significant non-statistical errors, a
very common —perhaps even the usual— situation. Computer generated errors are some
sort of none sense in this circumstance. Presumably your theory and/or measurement
methods are less than perfect. That is, of course, No Surprise. Science next requires you
to guess and perhaps further investigate which imperfections are the leading source of the
problems, i.e., what changes to the experiment would ameliorate the problem.
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YESTERDAY IS HISTORY
words by Dr. James D. Livingston
tune: Yesterday, by Paul McCartney

Yesterday — when old classical ideas held sway
Drude and Maxwell-Boltzmann had their say
And we believed them yesterday

Suddenly — quantum free-electron theory
Introduced the Fermi energy
And yesterday was history

Fer-mi theory you’ll agree has much to say
We see Drude was wrong — he belongs to yesterday

Density — of electron states provides the key
Multiplied by probability
Reveals electron properties
Yesterday is history
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Figure 5.13: Gauss’ Law is used to calculate the charge between two plates of area A
separated by a distance ∆x. Since (by assumption) the potential just depends on x, the
electric field is in the x direction and is given by E = −dV/dx.

Appendix—Poisson’s Equation

Equation 5.5 and Equation 5.28 made reference to “Poisson’s Equation”, which is really a
topic for Physics 341, rather than part of Physics 200. In this appendix, Poisson’s Equation
is derived starting from two Physics 200 results: Gauss’ Law: that the electric flux leaving
a region depends just on the charge enclosed by that region:

∮

~E · n̂ dA = Qenclosed/ǫ0 (5.81)

and the relationship between electric field and electric potential (voltage):

Ex = − dV

dx
(5.82)

Poisson’s Equation is a differential equation equivalent to Gauss’ Law. It is usually written
in terms of the Laplacian (∇2), which in turn can most easily be expressed in terms of
second derivatives w.r.t. x, y, and z:

∇2V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= −ρ/ǫ0 (5.83)

where ρ is the electric charge density. We need Poisson’s Equation only in cases where
the electric potential depends on just one variable (x or cylindrical r), which simplifies the
required proofs considerably.

As shown in Figure 5.13, if V is a function of x alone: V (x), we can find the charge between
two plates of area A using Gauss’ Law:

Qenclosed = ǫ0A (E(x+∆x)− E(x)) ≈ ǫ0A
dE

dx
∆x (5.84)

Thus the charge density between the plates is given by:

ρ =
Qenclosed

volume
=
ǫ0A dE

dx ∆x

A∆x
= ǫ0

dE

dx
= −ǫ0

d2V

dx2
(5.85)
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Figure 5.14: Gauss’ Law is used to calculate the charge between two coaxial cylinders of
length l separated by a distance ∆r. Since (by assumption) the potential just depends on
r, the electric field is in the r direction and is given by E = −dV/dr.

which provides what is needed for Equation 5.5.

As shown in Figure 5.14, if V is a function of r alone: V (r), we can find the charge between
two coaxial cylinders using Gauss’ Law:

Qenclosed = ǫ0l {2π(r +∆r)E(r +∆r)− 2πrE(r)}
= ǫ0l {2πr(E(r +∆r)− E(r)) + 2π∆rE(r +∆r)}

≈ ǫ0l

{

2πr
dE

dr
+ 2πE(r)

}

∆r (5.86)

Thus the charge density between the cylinders is given by:

ρ =
Qenclosed

volume
=
ǫ0l {2πr dE/dr + 2πE(r)}∆r

2πrl∆r
= ǫ0

{

dE

dr
+

1

r
E

}

(5.87)

= − ǫ0

{

d2V

dr2
+

1

r

dV

dr

}

(5.88)

which provides what is needed for Equation 5.28.
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Poster Topics:

Presentation of a lab project as a poster is the final component of this course. I will be
assigning you a topic; feel free to drop me email with a list of your preferences! (First come,
first served. Choose a topic ASAP and avoid the crunch at finals!) Topics:

1. Photometry: TB, TR

2. Bubble Chamber: mµ

3. Bubble Chamber: mπ

4. Thermionic Emission: Stefan-Boltzmann Law

5. Thermionic Emission: Richardson-Dushman Law

6. Thermionic Emission: Child-Langmuir Law

7. Langmuir Probe: Te

8. Langmuir Probe: ne

9. Langmuir Probe: Vf , Vp

Poster Basics:

size: maximum width: 6 feet; maximum height: 4 feet

fonts: title: 30–45 mm (160 pt)
authors and affiliations: 25–30 mm (96 pt)
main headings: 10 mm (48 pt)
subheadings: 8 mm (32 pt)
text: 5 mm (24 pt)

sections: Title, Author(s) with affiliation1, Abstract, Introduction, Methods (not re-
quired for standard techniques; a block diagram of the apparatus is often

1I.e., school/location: Saint John’s University, Collegeville, MN or College of Saint Benedict, St. Joseph,
MN; a logo is also nice
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helpful), Theory, Results and/or Discussion (if possible, use figures to dis-
play results; never display raw data or fit reports), Conclusions, References,
Acknowledgments

first steps: Assemble your figures. Make sure that they convey your main points and can
be understood from a distance. For each main section of your poster, try to
boil the essential points down to about 350 words (which will, in the proper
font, approximately fill an 81

2” × 11” sheet of paper). These section pages
can then be assembled along with the figures to form a rough version of your
poster. See the references below for book-length instructions on creating an
effective poster.

prepare: a 1–2 minute ‘talk’ that explains how you collected you data and why the
data you are displaying behaves as it does. (If your data displays ‘unex-
pected’ behavior, explain what was expected and how your data differs from
the expected.) This talk is to serve as an introduction to your experiment
for folks who are too lazy to read your poster or who have questions about
your work.

hints: • Focus on the main points as poster space is limited. Eliminate every-
thing but the essentials.

• Posters are visual, so your figures must convey your main messages.

• There should be a clear path through the poster: typically left to right
and top to bottom.

• Avoid unusual fonts and unnecessary font changes.

• Size fonts for viewing at a distance. (This is particularly important for
visual elements like plot axes labels.)

• The focus of this course has been systematic error, so discussion of the
systematic error in your project should be part of your poster.

• Properly report numbers: sigfigs, error, units!

• Do not plagiarize! Sentences/diagrams/photos grabbed from the web
(or this manual) must be cited (not just listed at the end under Refer-
ences).

• Tables of raw data, fit reports, etc. do not generally belong on a poster:
use graphs to display data.

warning: Years ago Dr. Steck flustered many students with the question: “What is the
basic physics behind your experiment?” Inability to explain simply, in a few
words (and no equations), what is going on in your experiment puts your
entire work in jeopardy as listeners figure if you don’t understand the basics,
you cannot be trusted on the details. You really must be fully prepared for
such questions. Feel free to practice your explanation with me. Here, for
example, are ∼200 words about Child’s law:

Child’s law states that the current through the vacuum tube is pro-
portional to the voltage drop across the tube to the three-halves
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power. The current here consists of electrons in the ‘vacuum’ mov-
ing from cathode to anode because of the electric field caused by
the voltage difference. It makes perfect sense that larger voltages
(and hence larger forces on the electrons) result in faster electrons
and hence more current. The fact that the power is exactly 1.5
is a result from dimensional analysis. The physics behind that
dimensional analysis involves current conservation (that the same
current must pass through any cylinder between cathode and an-
ode) and ‘space charge’: the charge density (due to the presence
of electrons) in the ‘vacuum’ modifies the electric field (which can
be calculated via Poisson’s equation). Current conservation means
that the electron density is lowest where the electrons are moving
fastest, so the highest space charge is near the cathode (i.e., before
the electrons have moved very far ‘downhill’). Child’s Law is lim-
ited by the maximum possible rate of electron evaporation from
the cathode: a temperature dependent effect known as Richard-
son’s Law.

References

1. Briscoe, Mary Helen Preparing Scientific Illustrations 1996, Springer-Verlag, Q222.B75

2. Gosling, Peter J. Scientist’s Guide to Poster Presentations 1999, Kluwer

3. https://blocklab.stanford.edu/publications.html see 1996: Dos and donts of
poster presentation. Biophysical Journal 71: 3527-3529

4. http://website.sigmaxi.org/meetings/student/hints.shtml

5. http://www.asp.org/education/EffectivePresentations.pdf

6. http://www.physics.csbsju.edu/370/poster_fonts.pdf
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7: Langmuir’s Probe

Train yourselves. Don’t wait to be fed knowledge out of a book. Get out and
seek it. Make explorations. Do your own research work. Train your hands and
your mind. Become curious. Invent your own problems and solve them. You can
see things going on all about you. Inquire into them. Seek out answers to your
own questions. There are many phenomena going on in nature the explanation
of which cannot be found in books. Find out why these phenomena take place.
Information a boy gets by himself is enormously more valuable than that which
is taught to him in school.

Irving Langmuir (1932 Nobel Laureate)
As quoted in Boys’ Life (June 1941), p. 12 “Find Yourself This Summer” by
Irving Crump

Purpose

The purpose of this lab is to measure some basic properties of plasmas: electron tempera-
ture, number density and plasma potential.

Introduction

When you think of electrical conductors, you probably think first of metals. In metals the
valence electrons are not bound to particular nuclei, rather they are free to move through
the solid and thus conduct an electrical current. However, by far the most common electrical
conductors in the Universe are plasmas: a term first applied to hot ionized gases by Irving
Langmuir (see below). In conditions rare on the surface of the Earth but common in the
Universe as a whole, “high” temperatures1 provide enough energy to eject electrons from

1What does “high temperature” mean? When you are attempting to make a Bose condensation at less
than a millionth of a degree, liquid helium at 4 K would be called hot. When you are calculating conditions
a few minutes after the Big Bang, a temperature of a billion degrees Kelvin would be called cool. An
important insight: Nothing that has units can be said to be big or small! Things that have units need to
be compared to a “normal state” before they can be declared big or small. Here the normal state refers to
conditions allowing normal solids and liquids to exist. Tungsten, which is commonly used in the filaments of
light bulbs, melts at about 3700 K; Carbon does a bit better: 3800 K. The “surface” of the Sun at 6000 K
has no solid bits. At temperatures of about 5000 K most molecules have decomposed into elements which
in turn have partially “ionized”: ejecting one or more electrons to leave a positively charged core (an ion)
and free electrons. I’ll pick 5000 K as my comparison point for “hot”, but of course some elements (e.g.,
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atoms. Thus a plasma consists of a gas of freely flying electrons, ions, and yet unionized
atoms. It should come as no surprise that during the extraordinary conditions of the Big
Bang, all the matter in the Universe was ionized. About 380,000 years after the Big Bang,
the Universe cooled enough for the first neutral atoms to form. Surprisingly about ∼400
million years after that the Universe was re-ionized, and the vast majority of the matter
in the universe remains ionized today (13.8 billion years after the Big Bang). Some of this
ionized matter is at high density (hydrogen gas more dense than lead) and extremely high
temperature at the center of stars, but most of it is believed to be at extremely low density
in the vast spaces between the galaxies.

Perhaps the most obvious characteristic of conductors (metals and plasmas) is that they
are shiny; that is, they reflect light. A moment’s thought should convince you that this is
not an “all-or-nothing” property. While metals reflect radio waves (see satellite TV dishes),
microwaves (see the inside of your microwave) and visible light, they do not reflect higher
frequency light like X-rays (lead, not aluminum, for X-ray protection). The free electron
number density (units: number of free electrons/m3), ne, determines the behavior of light
in a plasma. (Almost always plasmas are electrically neutral; i.e., the net electric charge
density ρ is near zero. If the atoms are all singly ionized, we can conclude that the ion
number density, ni, equals ne. In this lab we will be dealing with partially ionized argon
with a neutral atom density nn ≫ ne ≈ ni.) The free electron number density determines
the plasma frequency, ωp:

ωp = 2πfp =

√

nee2

ǫ0m
(7.1)

where −e is the charge on an electron and m is the mass of an electron. If light with
frequency f is aimed at a plasma: the light is reflected, if f < fp ; the light is transmit-
ted, if f > fp. Thus conductors are shiny only to light at frequencies below the plasma
frequency. In order to reflect visible light, the plasma must be quite dense. Thus metals
(ne ∼ 1028 m−3) look shiny, whereas semiconductors (ne ∼ 1024 m−3) do not. The plasma
at “surface” of the Sun (with ionized fraction less than 0.1% and ne ∼ 1020 m−3) would
also not look shiny. You will find the plasma used in this lab has even lower ne; it will look
transparent.

The defining characteristic of conductors (metals and plasmas) is that they can conduct an
electric current. Since conductors conduct, they are usually at a nearly constant potential
(voltage). (If potential differences exist, the resulting electric field will automatically direct
current flow to erase the charge imbalance giving rise to the potential difference.) At
first thought this combination (big current flow with nearly zero potential difference) may
sound odd, but it is exactly what small resistance suggests. In fact the detection of big
currents (through the magnetic field produced) first lead to the suggestion2 of a conductor
surrounding the Earth—an ionosphere. Edward Appleton (1924) confirmed the existence
and location of this plasma layer by bouncing radio waves (supplied by a B.B.C. transmitter)
off of it. In effect the ionosphere was the first object detected by radar. Appleton’s early
work with radar is credited with allowing development of radar in England just in time
for the 1941 Battle of Britain. Appleton received the Nobel prize for his discovery of the
ionosphere in 1947. (Much the same work was completed in this country just a bit later by

sodium) begin to ionize a lower temperatures, and others (e.g., helium) ionize at higher temperatures. The
key factor determining the ionized fraction in the Saha equation is the “first ionization energy”.

2Faraday (1832), Gauss (1839), Kelvin (1860) all had ideas along this line, but the hypothesis is usually
identified with the Scot Balfour Stewart (1882).
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Breit & Tuve.)

The plasma frequency in the ionosphere is around 3–10 MHz (corresponding to ne ∼
1011–1012 m−3). Thus AM radio (at 1 MHz) can bounce to great distances, whereas CB
radio (at 27 MHz) and FM (at 100 MHz) are limited to line-of-sight. (And of course
when you look straight up you don’t see yourself reflected in the ionospheric mirror, as
flight ∼ 5× 1014 Hz. On the other hand, extra terrestrials might listen to FM and TV, but
we don’t have to worry about them listening to AM radio.) The actual situation is a bit
more complex. In the lowest layer of the ionosphere (D region), the fractional ionization
is so low that AM radio is more absorbed than reflected. Sunlight powers the creation of
new ions in the ionosphere, so when the Sun does down, ionization stops but recombination
continues. In neutral-oxygen-rich plasmas like the D region, the plasma disappears without
sunlight. Higher up in the ionosphere (the F region, where ne is higher and nn lower) total
recombination takes much more than 12 hours, so the plasma persists through the night.
Thus AM radio gets big bounces only at night.

I have located a plasma (a hot ionized gas) high in the Earth’s atmosphere, yet folks climb-
ing Mt. Everest think it’s cold high up in the Earth’s atmosphere. First, the ionosphere
starts roughly 10 times higher than Mt. Everest, and in the F Region (about 200 km up)
“temperature” is approaching 1000 K, warm by human standards if not by plasma stan-
dards. But the electrons are hotter still. . . up to three times hotter (still not quite hot by
plasma standards). This is an odd thought: in an intimate mixture of electrons, ions, and
neutral atoms, each has a different temperature. As you know, in a gas at equilibrium the
particles (of mass M) have a particular distribution of speeds (derived by Maxwell and
Boltzmann) in which the average translational kinetic energy, 〈EK〉 is determined by the
absolute temperature T :

〈EK〉 = 1

2
M 〈v2〉 = 3

2
kT (7.2)

where k is the Boltzmann constant and 〈〉 denotes the average value. Thus, in a mixture
of electrons (mass m) and ions (mass Mi) at different temperatures (say, Te > Ti), you
would typically find the electrons with more kinetic energy than the ions. (Note that even
if Te = Ti, the electrons would typically be moving much faster than the ions, as:

1

2
m 〈v2e 〉 =

1

2
Mi 〈v2i 〉 (7.3)

ve
∣

∣

rms
=
√

〈v2e 〉 =

√

Mi

m
vi
∣

∣

rms
(7.4)

that is the root-mean-square (rms) speed of the electrons will be
√

Mi/m ≈
√
40 · 1827 ≈

270 times the rms speed of the Argon ions, in the case of an 40Ar plasma).

How can it be that the collisions between electrons and ions fail to average out the kinetic
energy and hence the temperature? Consider a hard (in-line) elastic (energy conserving)
collision between a slow moving (we’ll assume stopped, ui = 0) ion and a speeding electron
(vi).

vi ui = 0

initial
vf uf

final
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We can find the final velocities (vf & uf ) by applying conservation of momentum and energy.
The quadratic equation that is energy conservation is equivalent to the linear equation of
reversal of relative velocity:

vi = uf − vf (7.5)

mvi = mvf +Muf (7.6)

with solution:

uf =
2m

m+M
vi (7.7)

You can think of the ion velocity as being built up from a sequence of these random blows.
Usually these collisions would be glancing, but as a maximum case, we can think of each
blow as adding a velocity of ∆u = 2mvi/(m+M) in a random direction. Consider the ion
velocity vector before and after one of these successive blows:

uf = ui +∆u (7.8)

u2f = u2i + (∆u)2 + 2 ui ·∆u (7.9)

Now on average the dot product term will be zero (i.e., no special direction for ∆u), so on
average the speed-squared increases by (∆u)2 at each collision. Starting from rest, after N
collisions we have:

u2f = N (∆u)2 (7.10)

1

2
M u2f = N

1

2
M (∆u)2 (7.11)

= N
1

2
M

[

2m

m+M
vi

]2

(7.12)

= N
4m

m+M

M

m+M

1

2
mv2i (7.13)

Thus for argon, N ≈ 18, 000 hard collisions are required for the ion kinetic energy to build
up to the electron kinetic energy. Note that in nearly equal mass collisions (e.g., between
an argon ion and an argon atom), nearly 100% of the kinetic energy may be transferred in
one collision. Thus ions and neutral atoms are in close thermal contact; and electrons are
in close contact with each other. But there is only a slow energy transfer between electrons
and ions/atoms. In photoionization, electrons receive most of the photon’s extra energy as
kinetic energy. Slow energy transfer from the fast moving electrons heats the ions/atoms.
When the Sun goes down, the electrons cool to nearly the ion temperature.

Note that the hottest thing near you now is the glow-discharge plasma inside a fluorescent
bulb: Te > 3× 104 K. . . hotter than the surface of the Sun, much hotter than the tungsten
filament of an incandescent light bulb. The cool surface of the bulb gives testimony to the
low plasma density (ne ∼ 1016–1017 m−3) inside the bulb. Containing this hot but rarefied
electron gas heats the tube hardly at all — when the plasma’s heat gets distributed over
hugely more particles in the glass envelope, you have a hugely reduced average energy, and
hence temperature.

Plasma People

Irving Langmuir (1881–1957)
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Born in Brooklyn, New York, Langmuir earned a B.S. (1903) in metallurgical engineering
from Columbia University. As was common in those days, he went to Europe for advanced
training and completed a Ph.D. (1906) in physical chemistry under Nobel laureate Walther
Nernst at University of Göttingen in Germany. Langmuir returned to this country, taking
the job of a college chemistry teacher at Stevens Institute in Hoboken, New Jersey. Dis-
satisfied with teaching, he tried industrial research at the recently opened General Electric
Research Laboratory3 in Schenectady, New York. Langmuir’s work for G.E. involved the
then fledgling4 electric power industry. He begin with improving the performance of incan-
descent electric light bulb. (Langmuir is in the inventors hall of fame for patent number
1,180,159: the modern gas-filled tungsten-filament incandescent electric light.) His work
with hot filaments naturally led to thermionic emission and improvements in the vacuum
triode tube that had been invented by Lee de Forest5 in 1906. Working with glow discharge
tubes (think of a neon sign), he invented diagnostic tools like the Langmuir probe to in-
vestigate the resulting “plasma” (a word he coined). “Langmuir waves” were discovered in
the plasma. Along the way he invented the mercury diffusion pump. In high vacuum, thin
films can be adsorbed and studied. As he said in his 1932 Nobel prize lecture:

When I first began to work in 1909 in an industrial research laboratory, I
found that the high-vacuum technique which had been developed in incandescent
lamp factories, especially after the introduction of the tungsten filament lamp,
was far more advanced than that which had been used in university laboratories.
This new technique seemed to open up wonderful opportunities for the study of
chemical reactions on surfaces and of the physical properties of surfaces under
well-defined conditions.

In 1946, Langmuir developed the idea of cloud seeding, which brought him into contact with
meteorologist Bernard Vonnegut, brother of my favorite author Kurt Vonnegut. That’s how
Langmuir became the model for Dr. Felix Hoenikker, creator of “ice-nine” in the novel Cat’s
Cradle. In fact Langmuir created the ice-nine idea (a super-stable form of solid water, with
resulting high melting point, never seen in nature for want of a seed crystal) for H.G. Wells
who was visiting the G.E. lab.

Lyman Spitzer, Jr (1914–1997)

Lyman Spitzer was born in Toledo, Ohio, and completed his B.A. in physics from Yale in
1935. For a year he studied with Sir Arthur Eddington at Cambridge, but that did not
work out so he returned to this country and entered Princeton. He completed his Ph.D. in
1938 under Henry Norris Russell, the dean of American astrophysics. Following war work
on sonar, he returned to astrophysics. His 1946 proposal for a large space telescope earned
him the title “Father of the Hubble Space Telescope”.

3G.E. calls this lab, which opened in 1900, the “first U.S. industrial laboratory devoted to research,
innovation and technology”, but Edison’s Menlo Park “invention factory” (1876) would often claim that
honor. Bell Labs (founded 1925), with six Nobel prizes in physics, would probably claim to be the world’s
preeminent industrial research lab, but the break up of the “Ma Bell” monopoly has also reduced Bell Labs.

4Although not germane to my topic, I can’t resist mentioning the famous AC (with Tesla and Westing-
house) vs. DC (with Edison, J.P. Morgan, and G.E.) power wars just before the turn of the century. The
battle had a variety of bizarre twists, e.g., each side inventing an electric chair based on the opposite power
source aiming to prove that the opponent’s source was more dangerous than theirs. Easy voltage transfor-
mation with AC guaranteed the victory we see today in every electrical outlet worldwide. Unfortunately
the AC frequency did not get standardized so its 60 Hz here and 50 Hz in Europe.

51873–1961; “Father of Radio”, born Council Bluffs, Iowa, B.S & Ph.D. in engineering from Yale
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Because of the bend in The Curve of Blinding Energy6, the lowest energy nuclei are of
middle mass (e.g., 56Fe). Thus nuclear energy can be released by breaking apart big nuclei
(like 235U and 239Pu): fission as in the mis-named atomic bomb or by combining small nuclei
(like 2H deuterium and 3H tritium): fusion as in the hydrogen bomb. In 1943 Edward Teller
and Stanislaw Ulam started theoretical work on bombs based on thermonuclear fusion then
called “super” bombs. The end of WWII slowed all bomb work, but the explosion of the
first Russian atomic bomb, “Joe 1”, in 1949, rekindled U.S. bomb work. This history of
renewed interest in H-bomb work is mixed up with Russian espionage—real and imagined,
“McCarthyism”, and the removal of Robert Oppenheimer’s7 security clearance in 1954.8

Our piece of the fusion story starts with Spitzer’s 1951 visit with John Wheeler9 in Los
Alamos at just the right moment. The building of the Super, in response to Joe 1, had been
failing: difficult calculations showed model designs would not ignite. Energy lost by thermal
radiation and expansion cooled the “bomb” faster than nuclear energy was released.10 But
just before Spitzer arrived, Ulam and Teller had come up with a new method (radiation
coupling for fuel compression) that Oppenheimer called “technically sweet”. Meanwhile, in
a story Hollywood would love, Argentine president Juan Perón announced that his protégè,
Ronald Richter an Austrian-German chemist, working in a secret island laboratory had
achieved controlled fusion. The story (of course) fell apart in less than a year, but it
got both Spitzer and funding agencies interested. Spitzer’s idea (the “Stellarator”) was a
magnetically confined plasma that would slowly fuse hydrogen to helium, releasing nuclear
energy to heat steam and turn electrical generators. Spitzer and Wheeler hatched a plan
to return to Princeton with a bit of both projects (of course funded by the government11):
Project Matterhorn B would work on bombs and Project Matterhorn S would work on
stellarators. Matterhorn B made calculations for the thermonuclear stage of the test shot
Mike (1 Nov 1952)—the first H-bomb. The device worked even better than they had
calculated.

From 1951 until 1958 stellarator research was classified. Optimistic projections12 for fusion
reactors were believed by all—after all physicists had completed key projects (atomic bomb,
radar, H-bomb) like clockwork. Why should controlled fusion be much different from the
carefully calculated fusion of an H-bomb? Early hints of fusion success (neutron emission)
turned out to be signs of failure: “instabilities” or disturbances that grew uncontrollably

6Title of an interesting book by John McPhee; ISBN: 0374515980; UF767 .M215 1974
7J. Robert Oppenheimer (1904–1967): born New York, NY, Ph.D. (1927) Göttingen. Directed atomic

bomb work at Los Alamos during WWII; ‘father of the atomic bomb’.
8See: Dark Sun, by Richard Rhodes, UG1282.A8 R46 1995
9John Archibald Wheeler (1911–2008): born Jacksonville, FL, B.S.+Ph.D. (1933) Johns Hopkins, Feyn-

man’s major professor at Princeton in 1942. Famous book: Gravitation. Coined the word “black hole”.
10Curve of Binding Energy p. 64: One day, at a meeting of people who were working on the problem of

the fusion bomb, George Gamow placed a ball of cotton next to a piece of wood. He soaked the cotton with
lighter fuel. He struck a match and ignited the cotton. It flashed and burned, a little fireball. The flame
failed completely to ignite the wood which looked just as it had before—unscorched, unaffected. Gamow
passed it around. It was petrified wood. He said, “That is where we are just now in the development of the
hydrogen bomb.”

11The U.S. Atomic Energy Commission (AEC) initiated the program for magnetic fusion research under
the name Project Sherwood. In 1974 the AEC was disbanded and replaced by the Energy Research and
Development Administration (ERDA). In 1977, ERDA in turn was disbanded and its responsibilities trans-
ferred to the new Department of Energy (DOE). Since 1977, DOE has managed the magnetic fusion research
program.

12An August 1954 report on a theoretical Model D Stellarator (only Model B, with a 2” tube, had actually
been built), using assumptions that proved false, projected a power output approximately four times that
of Hoover Dam. The usual joke is that controlled fusion will always be just ten years away.
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in the plasma. Turbulence—the intractable problem in hydrodynamics13 from the 19th

century—came back to bite physics in the 1950s. Instead of the hoped-for “quiescent”
plasma, experiment found large amplitude waves: a thrashing plasma that easily escaped
the magnetic field configurations physicists had thought should confine it. In 1961 Spitzer
turned directorship of the Princeton Plasma Physics Laboratory (PPPL) over to Melvin
Gottlieb, and largely returned to astrophysical plasmas.

The current focus for magnetically confined plasma research is the “tokamak”: a particular
donut-shape (torus) configuration that confines the plasma in part using a large current
flowing through the plasma itself. Designed by Russians Igor Tamm and Andrei Sakharov,
the T-3 Tokamak surprised the plasma physics world when results were made public in
1968. In 1969, PPPL quickly converted the C-Stellarator into the ST tokamak.

Returning to astrophysics, Spitzer’s influential books demonstrate his connection to plasma
physics: Physics of Fully Ionized Gases (1956 & 1962), Diffuse Matter in Space (1968),
Physical Processes in the Interstellar Medium (1978), and Dynamical Evolution of Globular
Clusters (1988).

Summary

Almost everywhere in time and space, plasmas predominate. While present in some natural
phenomena at the surface of the Earth (e.g., lightning), plasmas were “discovered” in glow
discharges. In the first half of the 1900s, plasma physics was honored with two Nobels14

Langmuir worked to understand “industrial” plasmas in things that are now considered
mundane like fluorescent lights. Appleton located the ionosphere: an astronomical plasma
surrounding the Earth. Both Nobels were connected to larger historical events (the rise of
radio and radar in time to stop Hitler at the English channel).

In the second half of the 1900s, plasma physics was connected to unpleasant problems:
politics (McCarthyism), espionage, and turbulence. While H-bombs worked as calculated,
controlled fusion proved difficult and only slow progress has been achieved. Astrophysical
plasmas (for example, around the Sun) have also proved difficult to understand.

In this century, “industrial” plasmas are again newsworthy with plasma etching for com-
puter chip manufacture and plasma display screens for HDTV.

Since the calculation of plasma properties has proved so difficult, measurements of plasma
properties (“plasma diagnostics”) are critical. In all sorts of plasmas (astrophysical, ther-
monuclear, industrial), the primary plasma diagnostic has been that first developed by
Langmuir. The purpose of this lab is to measure basic plasma properties (Te, ne) using a
Langmuir probe.

13Turbulence in hydrodynamics is one of the Clay Millennium Prize Problems (essentially Nobel + Hilbert
for mathematics in this century): 1 million dollars for a solution!

14An additional Nobel for plasma physics: Hannes Alfvén (1970). Note that Tamm and Sakharov (named
in the context of the Tokamak) also received Nobels, but not for plasma physics work.
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Figure 7.1: When a current flows between the anode (+) and cathode (–), the gas in the tube
partially ionizes, providing electrons and ions to carry the current. The resulting plasma
is at a nearly constant potential. Electric fields (from potential differences) exist mostly
at the edge of the plasma, in the plasma sheath. The largest potential drop is near the
cathode. The resulting cathode glow is the region of plasma creation. Increased discharge
current Ic results in expanded coverage of the cathode by the cathode glow, but not much
change in the cathode voltage Vc. Note that if the anode/cathode separation were larger,
a positive column of excited gas would be created between the Faraday dark space and the
anode.

Glow Discharge Tube

In a glow (or gas) discharge tube, a large voltage (∼100 V) accelerates free electrons to
speeds sufficient to cause ionization on collision with neutral atoms. The gas in the tube is
usually at low pressure (∼1 torr), so collisions are not so frequent that the electrons fail to
reach the speed required for ionization.

Making an electrical connection to the plasma is a more complicated process than it might
seem:

A. The creation of ions requires energetic collisions (say, energy transfer ∼10 eV). Kinetic
energy for the collision must in turn come from potential differences of ∼> 10 V.
However, we’ve said that conductors (like the plasma) are at approximately constant
potential. Thus ion creation must occur at the edge of the plasma.

B. It turns out that attempts to impose a potential difference on a plasma fail. Typically
potential differences propagate only a short distance, called the Debye length λD, into
the plasma:

λD =

√

ǫ0kTe
e2ne

(7.14)

Thus we expect the “edge” of the plasma to be just a few λD thick.

C. The small electron mass (compared to ions), guarantees high electron mobility in the
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plasma. Thus we expect electrons to carry the bulk of the current in the plasma. But
this cannot be true in the immediate vicinity of the cathode. The electrons inside the
cold cathode (unlike the heated cathode in thermionic emission) are strongly held—
they will not spontaneously leave the cathode. Thus near the cathode the current
must be carried by ions which are attracted to the negatively charged cathode. Once
in contact with the cathode an ion can pick up an electron and float away as a neutral
atom. Note particularly that there is no such problem with conduction at the anode:
the plasma electrons are attracted to the anode and may directly enter the metal to
continue the current. Thus we expect the active part of the discharge to be directly
adjacent to the cathode.

D. If you stick a wire into a plasma, the surface of the wire will be bombarded with
electrons, ions, and neutrals. Absent any electric forces, the impact rate per m2 is
given by

J =
1

4
n 〈v〉 = 1

4
n

√

8kT

πM
(7.15)

where n is the number density of the particles and 〈v〉 is their average speed. If
the particles follow the Maxwell-Boltzmann speed distribution, the average speed is
determined by the temperature T and mass M of the particles. (Recall: vrms =
√

3π/8 〈v〉 ≈ 1.085 〈v〉 for a Maxwell-Boltzmann distribution.) Since the electron
mass is much less than the ion mass (m ≪ Mi) and in this experiment the temper-
atures are also different (Te ≫ Ti), the average electron speed is much greater than
the average ion speed. Thus an item placed in a plasma will collect many more elec-
trons than ions, and hence will end up with a negative charge. The over-collection
of electrons will stop only when the growing negative charge (repulsive to electrons,
attractive to ions) reduces the electron current and increases the ion current so that
a balance is reached and zero net current flows to the wire. The resulting potential is
called the floating potential, Vf .

The upshot of these considerations is that objects immersed in a plasma do not actually
contact the plasma. Instead the plasma produces a “sheath”, a few Debye lengths thick, that
prevents direct contact with the plasma. We begin by demonstrating the above equations.

The starting point for both equations is the Boltzmann factor:

probability = N e−E/kT (7.16)

which reports the probability of finding a state of energy E in a system with temperature
T , where N is a normalizing factor that is determined by the requirement that the total
probability adds up to 1. The energy of an electron, the sum of kinetic and potential energy,
is

E =
1

2
mv2 − eV (7.17)

where V is the voltage at the electron’s position. (See that for an electron, a low energy
region corresponds to a high voltage region. Thus Boltzmann’s equation reports that elec-
trons are most likely found in high voltage regions.) To find N add up the probability for
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all possible velocities and positions:

1 = N
∫ +∞

−∞
dvx

∫ +∞

−∞
dvy

∫ +∞

−∞
dvz

∫

dV exp

(

−1
2 mv

2 + eV (r)

kT

)

= N
∫ +∞

−∞
e−mv2x/2kTdvx

∫ +∞

−∞
e−mv2y/2kTdvy

∫ +∞

−∞
e−mv2z/2kTdvz

∫

dV eeV (r)/kT

= N
[

2πkT

m

]3/2

V eeV (r0)/kT (7.18)

where we have used the Gaussian integral:

∫ +∞

−∞
e−αx2

dx =

√

π

α
(7.19)

and the mean value theorem to replace the integral over the volume V of the electron gas
with V times some value of the integrand in that domain. Thus:

probability =
e−E/kT

[

2πkT
m

]3/2 VeeV (r0)/kT
=

1

V
[ m

2πkT

]3/2
exp

(

−
1
2mv

2 − e(V − V0)

kT

)

(7.20)

So, if we have N (non-interacting) electrons in V, the expected distribution of electrons
(w.r.t. position and velocity) can be expressed as:

f = n0

[ m

2πkT

]3/2
exp

(

−
1
2mv

2 − e(V − V0)

kT

)

(7.21)

where n0 = N/V is the bulk electron density which is also the electron density at potential
V0. If we don’t care about the distribution of electron speed, we can add up (integrate)
over all possible speeds (which just reproduces the Gaussian factors from N ), resulting in
the electron number density, n:

n = n0 exp

(

e(V − V0)

kT

)

(7.22)

D. Collision Rate: If we just care about the distribution of velocity in one direction (say,
vx), integrals over the other two directions (vy, vz) results in:

fx = n0

[ m

2πkT

]1/2
exp

(

−
1
2mv

2
x − e(V − V0)

kT

)

(7.23)

We simplify further by considering the case where the potential is a constant (i.e., V = V0).
In order to calculate the number of electrons that hit an area A during the coming interval
∆t, focus on a subset of electrons: those that happen to have a particular velocity vx. (We
will then add up all possible vx, from vmin to ∞. For this immediate problem vmin = 0, i.e.,
any electron moving to the right can hit the wall; however, we’ll need the more general case
in a few pages.) An electron must be sufficiently close to the wall to hit it: within vx∆t.
The number of electron hits will be equal to the number of such electrons in the shaded
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Figure 7.2: Seeking the number of electrons to hit the area A, focus on just those electrons
with some particular x-velocity, vx. Electrons within vx∆t of the wall will hit it sometime
during upcoming time interval ∆t. The number of such electrons that will hit an area A will
be equal to the number of such electrons in the shaded volume. Note that many electrons
in that volume will not hit A because of large perpendicular velocities, but there will be
matching electrons in neighboring volumes which will hit A. To find the total number of
hits, integrate over all possible vx.

volume in Figure 7.2. To find the total number of hits, integrate over all possible vx:

number of hits =

∫ ∞

vmin

dvx fx Avx∆t (7.24)

= A∆t n0

[ m

2πkT

]1/2
∫ ∞

vmin

exp

(

−
1
2mv

2
x

kT

)

vx dvx (7.25)

= A∆t n0

[ m

2πkT

]1/2 kT

m

∫ ∞

mv2min/2kT
e−ydy (7.26)

= A∆t n0

[

kT

2πm

]1/2

exp

(

−
1
2mv

2
min

kT

)

(7.27)

−→ A∆t n0

[

kT

2πm

]1/2

for vmin → 0 (7.28)

Thus the particle current density, Je, (units: hits per second per m2) is

Je =
hits

A∆t
=

1

4
ne

[

8kT

πm

]1/2

=
1

4
ne 〈v〉 (7.29)

B. Debye Length (λD): To introduce the Debye length, we consider a very simplified case:
the potential variation due to varying electron density in a uniform (and nearly canceling,
i.e., ni = ne0) ion density. By Poisson’s equation:

ǫ0 ∇2V = −e
(

ni − ne0e
eV/kT

)

= −ene0
(

1− eeV/kT
)

≈ ene0

(

eV

kT

)

(7.30)

where we have assumed eV/kT ≪ 1 so we can Taylor expand. If we consider variation in
just one direction (x), we have:

d2V

dx2
=

(

e2ne0
ǫ0kT

)

V =
1

λ2D
V (7.31)
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Figure 7.3: At its simplest, a Langmuir probe is just a wire stuck into the plasma. Of
course, electrical contact with the plasma is limited by the plasma sheath. An external
power supply allows the probe’s voltage to be adjusted and the resulting current measured.
The characteristics of the plasma can be determined by careful analysis of the resulting IV
relationship.

with exponentially growing/decaying solutions of the form: V ∝ exp (±x/λD). We learn
from this that deviations from charge neutrality take place on a length scale of λD, and are
self-reinforcing so that very large changes in the potential can be accomplished in a distance
of just a few λD.

In the cathode glow, high speed electrons (accelerated in the large electric field in the
neighboring cathode dark space) collision-ionize the gas. Many of the newly created ions
are attracted to the cathode. Accelerated by cathode dark space electric field, the ions crash
into the cathode. The collision results in so-called secondary electron emission15 from the
cathode. These secondary electrons are then repelled from the cathode and cause further
ionization in the cathode glow region. The observed voltage drop near the cathode (the
“cathode fall”), is exactly that required so that, on average, a secondary electron is able to
reproduce itself through the above mechanism. Clearly the cathode fall depends both on
the gas (how easy it is to ionize) and the cathode material (how easy is it to eject secondary
electrons). Luckily we will not need to understand in detail the processes maintaining
the discharge near the cathode. A properly operating Langmuir probe does not utilize
secondary electron emission, that is we limit voltage drop near the probe to much less than
the cathode fall.

Langmuir Probe Theory

As stated above, if a wire is stuck into a plasma, instead of connecting to the plasma
potential (Vp) it instead charges to a negative potential (the floating potential: Vf < Vp)
so as to retard the electron current enough so that it matches the ion current. An equal
flow of electrons and ions—zero net current— is achieved and charging stops. If the wire
is held at potentials above or below Vf , a net current will flow into the plasma (positive I:
plasma electrons attracted to the probe), or out from the plasma (negative I: plasma ions

15Secondary electron emission is the key to photomultiplier tubes used to detect single photons.
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attracted to the probe). Figure 7.3 displays a Langmuir probe IV curve dividing it up into
four regions (A–D):

A. When the Langmuir probe is well above the plasma potential it begins to collect some
of the discharge current, essentially replacing the anode.

B. When the probe is at the plasma potential (left side of region B), there is no plasma
sheath, and the surface of the probe collects ions and electrons that hit it. The electron
current is much larger than the ion current, so at Vp the current is approximately:

Ip = eA1

4
ne

[

8kTe
πm

]1/2

(7.32)

where A is the area of the probe. For V > Vp, the sheath forms, effectively expanding
slightly the collecting area. Thus the probe current increases slightly and then levels
off in this region.

C. When the Langmuir probe’s potential is below Vp, it begins to repel electrons. Only
electrons with sufficient kinetic energy can hit the probe. The minimum approach
velocity vmin allowing a probe hit can be determined using conservation of energy:

1

2
mv2min − eVp = −eV (7.33)

1

2
mv2min = e(Vp − V ) (7.34)

where the probe is at potential V . Equation 7.27 then reports that the resulting
electron current is

I = eA ne

[

kTe
2πm

]1/2

exp

(

−e(Vp − V )

kTe

)

(7.35)

For V ≪ Vp, very few of the electrons have the required velocity. At V = Vf the
electron current has been suppressed so much that it equals the ion current. (The ion
current is always present in region C, but typically for V > Vf it is “negligible” in
comparison to the electron current.)

D. In this region the probe is surrounded by a well developed sheath repelling all electrons.
Ions that random-walk past the sheath boundary will be collected by the probe. As
the sheath area is little affected by the probe voltage, the collected ion current is
approximately constant. (At very negative voltages, V ∼ −60 V, secondary electron
emission following ion hits leads to large currents, and a glow discharge.) The equation
for this ion current is a bit surprising (that is not analogous to the seeming equivalent
electron current in region B):

Ii ≈ −1

2
eA ni uB (7.36)

where uB is the Bohm16 velocity—a surprising combination of electron temperature
and ion mass:

uB =
√

kTe/Mi (7.37)

16David Bohm (1917–1992) Born: Wiles-Barre, PA, B.S. (1939) PSU, joined Communist Party (1942),
Ph.D. (1943) Berkeley — Oppenheimer’s last student before he became director at Los Alamos. Cited for
contempt by McCarthy’s House Un-American Activities Committee, Bohm was arrested in 1950. Although
acquitted at trial, he was nevertheless blacklisted, and ended up in London.

FYI: at about the same time and for similar reasons physicists Frank Oppenheimer and Joseph Weinberg
were expelled from UMn.
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Figure 7.4: When the Langmuir probe is negatively biased relative to the plasma, it attracts
ions from the plasma (and repels electrons). Of course, the the accelerating electric field
(from voltage difference) is largely confined to the edge of the plasma, the plasma sheath.
The resulting ion current density Ji should be continuous: the same for every x.

Note that Equation 7.15 would have suggested a similar result but with the thermal
velocity rather than the Bohm velocity.

Region D: Ion Current

As shown in Figure 7.4, consider bulk plasma (ni = ne = n0, located at x = 0 with a plasma
potential we take to be zero Vp = 0) near a planar Langmuir probe (located at x = b biased
with a negative voltage). In the bulk plasma, the ions are approaching the probe with a
velocity u0. The ions are accelerated towards the negatively biased probe; we can determine
their velocity, u(x) at any position by applying conservation of energy:

1

2
Miu

2 + eV (x) =
1

2
Miu

2
0 (7.38)

u(x) = u0

√

1− 2eV (x)

Miu20
(7.39)

The moving ions constitute a steady electric current density:

Ji = en(x)u(x) = en0u0 (7.40)

(i.e., Ji doesn’t depend on position), so n(x) must decrease as the ions speed toward the
probe.

n(x) = n0u0/u(x) =
n0

√

1− 2eV (x)
Miu2

0

(7.41)
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The varying charge density affects the electric potential which in turn affects the electron
density through the Boltzmann equation (Equation 7.22). Poisson’s equation reads:

d2V

dx2
= −ρ(x)

ǫ0
=

e

ǫ0
n0



exp

(

eV (x)

kTe

)

− 1
√

1− 2eV (x)
Miu2

0



 (7.42)

The first step in solving most any differential equation, is to convert it to dimensionless
form. We adopt dimensionless versions of voltage, position, and velocity:

Ṽ =
eV

kTe
(7.43)

x̃ =
x

λD
= x

[

n0e
2

ǫ0kTe

]1/2

(7.44)

ũ0 =
u0
uB

=
u0

√

kTe/Mi

(7.45)

If we multiply Equation 7.42, by e/kTe, we find:

d2Ṽ

dx2
=

1

λ2D









exp(Ṽ )− 1
√

1− 2Ṽ
ũ2
0









(7.46)

or
d2Ṽ

dx̃2
= exp(Ṽ )− 1

√

1− 2Ṽ
ũ2
0

(7.47)

First let’s simplify notation, by dropping all those tildes.

d2V

dx2
= exp(V )− 1

√

1− 2V
u2
0

(7.48)

The physical solution should show the neutral plasma picking up a positive charge density
as we approach the probe (as electrons are repelled and ions attracted to the probe). The
r.h.s. of Equation 7.48 is proportional to the charge density ne − ni which is nearly zero at
x = 0 (where V = 0) and monotonically declines as x approaches the probe (where V < 0).
If we Taylor expand the r.h.s., we find:

ne − ni ∝ exp(V )− 1
√

1− 2V
u2
0

≈
(

1 + V +
1

2
V 2 + · · ·

)

−
(

1 +
1

u20
V +

3

2u40
V 2 + · · ·

)

=

(

1− 1

u20

)

V +
1

2

(

1− 3

u40

)

V 2 + · · · (7.49)

Thus u0 ≥ 1 is required for ni > ne when V < 0. Maximizing the extent of charge neutrality
requires u0 = 1. As shown in Figure 7.5, the choice u0 = 1 works throughout the V < 0
range (i.e., beyond the range of convergence of the Taylor’s series).

Note that we can numerically solve this differential equation using Mathematica:
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Figure 7.5: A plot of the ion density (A) ni ∝
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1− 2V (x)/u20
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and the electron density

(B) ne ∝ eV (x) for V ≤ 0 in the vicinity of the probe. (With this axis choice the bulk
plasma, at V = 0, is to the right and the probe, at V < 0, is on the left.) The case u0 = 1
is displayed. Notice that ni > ne throughout the plasma sheath, as is required. If u0 < 1,
there would be a region near V = 0 where ne > ni. If u0 > 1, the densities in region near
V = 0 would not be tangent. There would be a first-order mismatch between ne and ni:
ni > ne for V < 0 and ni < ne for V > 0 .
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Figure 7.6: Mathematica solutions of our differential equation (7.48) with V ′(0) = −.0068
(top) and V ′(0) = −.00067 (bottom). Smaller E simply places the probe at a greater
distance without much changing the voltage in the vicinity of the probe (i.e., in the sheath).
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NDSolve[{v’’[x]==Exp[v[x]]-1/Sqrt[1-2 v[x]/u0^2],v[0]==0,v’[0]==0},v,{x,0,20}]

but, it’s not quite that simple. The unique solution with these boundary conditions, is
V = 0 everywhere. There must be some small electric field (V ′(0) < 0 ⇐⇒ E > 0) at x = 0
due to probe. The smaller the choice of E, the more distant the probe. See Figure 7.6.

We have concluded, u0 = 1, or returning to dimensioned variables: u0 = uB . However,
we must now determine how the ions arrived at this velocity. It must be that in the much
larger region (“pre-sheath”, x ≪ 0), under conditions of near charge neutrality (ne ≈ ni),
the ions traveled “downhill” a potential difference of:

V (−∞)− V (0) =
K.E.

e
=

1
2Miu

2
B

e
=
kTe
2e

(7.50)

Thus, at x = 0, the plasma density has been depleted compared to that at x = −∞:

ni = ne = n0 = n∞e
∆V/kTe = n∞e

−1/2 (7.51)

The corresponding current density is:

J = en0u0 = en∞e
−1/2uB ≈ .61 en∞

√

kTe
Mi

(7.52)

Clearly this is an approximate argument. Other arguments can give lower (e.g., .40) con-
stants. We adopt as our final equation (if only approximate: ±20%)

Ji ≈
1

2
en∞

√

kTe
Mi

(7.53)

Region C

Plasma Potential, Vp

We have said that for V < Vp, the electron current to the probe is exponentially growing
essentially because of the exponential form of the Maxwell-Boltzmann distribution. For
V > Vp, the electron current to the probe continues to grow, but only because of expanding
collecting area due to an expanding plasma sheath. The boundary between two cases is
defined by the point of maximum slope. The point where the slope is a maximum, of course,
has the second derivative zero—an inflection point. Thus Vp is defined by I ′′(Vp) = 0. (This
is called the Druyvesteyn criteria.)

In calculus you’ve learned how to apply a precise definition of derivative to find the deriva-
tives of various functions, but how can you determine the second derivative from a set of
data?

We begin with a qualitative treatment. If you have a set of equally spaced data points:
xi = ih where i ∈ Z (i is an integer, h might have been called ∆x), then (f(xi+1)−f(xi))/h
(the slope of a line through the points (xi, f(xi)) & (xi+1, f(xi+1)) ought to be something
like f ′(xi + h/2) (the derivative half way between xi & xi+1). Similarly, f ′(xi − h/2) ≈
(f(xi)− f(xi−1))/h. Thus:

f ′′ ≈ f ′(xi + h/2) − f ′(xi − h/2)

h
=
f(xi+1) + f(xi−1)− 2f(xi)

h2
(7.54)
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Figure 7.7: Numerical differentiation applied to the function f(x) = ex. f ′ and f ′′ have been
vertically offset by 2 and 4 respectively so that they do not coincide with f . (A) Here with
h = .2, the numerically calculated f ′ and f ′′ (based on the shown data points) accurately
track the actual derivatives (shown as curves). (B) With random noise of magnitude ±.02
added to the y values, the data points seem to accurately follow the function, but numerically
calculated f ′ and f ′′ increasingly diverge. See that numerical differentiation exacerbates
noise. (C) Doubling the number of data points (with the same level of random noise as in
B), makes the situation much worse. While the data points seem to follow f adequately, f ′

shows large deviations and f ′′ does not at all track the actual derivative.

where we imagine f ′′ is evaluated half way between xi + h/2 & xi − h/2, that is, at xi.

More formally, theoretically f has a Taylor expansion:

f(xi + y) = f(xi) + f ′(xi)y +
1

2
f ′′(xi)y

2 +
1

6
f ′′′(xi)y

3 +
1

24
f ′′′′(xi)y

4 + · · · (7.55)

So:

f(xi + h) = f(xi+1) = f(xi) + f ′(xi)h+
1

2
f ′′(xi)h

2 +
1

6
f ′′′(xi)h

3 +
1

24
f ′′′′(xi)h

4 + · · ·

f(xi − h) = f(xi−1) = f(xi)− f ′(xi)h+
1

2
f ′′(xi)h

2 − 1

6
f ′′′(xi)h

3 +
1

24
f ′′′′(xi)h

4 + · · ·

f(xi + h) + f(xi − h) = 2f(xi) + f ′′(xi)h
2 +

1

12
f ′′′′(xi)h

4 + · · · (7.56)

with the result:

f(xi + h) + f(xi − h)− 2f(xi)

h2
= f ′′(xi) +

1

12
f ′′′′(xi)h

2 + · · · (7.57)

Thus if f ′′′′(xi)h2/f ′′(xi) ≪ 1 (which should follow for sufficiently small h), Equation 7.54
should provide a good approximation for f ′′(xi). While ever smaller h looks good mathe-
matically, Figure 7.7 shows that too small h plus noise, is a problem.
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Root Finding—Floating Potential, Vf & Plasma Potential, Vp

The floating potential is defined by I(Vf ) = 0. Of course, it is unlikely that any collected
data point exactly has I = 0. Instead a sequence of points with I < 0 will be followed
by points with I > 0, with Vf lying somewhere between two measured points. We seek to
interpolate to find the best estimate for Vf .

We begin with the generic case, where we seek a root, i.e., the x value such that y(x) = 0.
We start with two data points (x1, y1) and (x2, y2) with y1 < 0 and y2 > 0. The line
connecting these two points has equation:

y =
∆y

∆x
(x− x1) + y1 =

y2 − y1
x2 − x1

(x− x1) + y1 (7.58)

We seek the x value for which the corresponding y value is zero:

∆y

∆x
(x− x1) + y1 = y = 0 (7.59)

x− x1 = −y1
∆x

∆y
(7.60)

x = x1 − y1
∆x

∆y
(7.61)

In the case of the floating potential (I(Vf ) = 0), our (xi, yi) are a sequence of voltages with
measured currents: xi = Vi, yi = I(Vi), and we can apply the above formula to find the
voltage, Vf where the current is zero.

The same generic result can be used to estimate the plasma potential, where I ′′(Vp) = 0.
Here xi = Vi, yi = I ′′(Vi). Just as in the floating voltage case, it is unlikely that any
collected data point exactly has I ′′ = 0. Instead a sequence of points with I ′′ > 0 will be
followed by points with I ′′ < 0, with Vp lying somewhere between two measured points.
You will apply the generic interpolate formula to find the best estimate for Vp.

Electron Temperature, Te

If we combine Equation 7.36 for the ion current with Equation 7.35 for the electron current,
we have an estimate for the total current through out Region C:

I = −1

2
eA ni uB +

1

4
eA ne

[

8kTe
πm

]1/2

exp

(

−e(Vp − V )

kTe

)

(7.62)

=
1

2
eA nuB

{

−1 +

[

2Mi

πm

]1/2

exp

(

−e(Vp − V )

kTe

)

}

(7.63)

= k1 + k2 exp ((V − Vp)/k3) (7.64)

Use of this equation is based on a long list of assumptions (e.g., constant collection area A,
Maxwell-Boltzmann electron speed distribution, ni = ne = n. . . ). These assumptions are
not exactly true, so we do not expect this equation to be exactly satisfied: we are seeking a
simplified model of reality not reality itself. By fitting this model equation to measured IV
data, we can estimate the parameters k1, k2, k3. Since k3 = kTe/e we can use it to estimate
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the electron temperature. Similarly, k1 represents a measure of the ion current from which
(once Te is known) ni can be calculated using Equation 7.36.

In order to start a non-linear fit as in Equation 7.64, we need initial estimates for the
parameters ki. Measurement of Vf (where I = 0) and Equation 7.63, provide an estimate
for Te:

0 = I =
1

2
eA n uB

{

−1 +

[

2Mi

πm

]1/2

exp

(

e(Vf − Vp)

kTe

)

}

(7.65)

1 =

[

2Mi

πm

]1/2

exp

(

e(Vf − Vp)

kTe

)

(7.66)

0 =
1

2
ln

[

2Mi

πm

]

−
(

e(Vp − Vf )

kTe

)

(7.67)

e

kTe
(Vp − Vf ) =

1

2
ln

[

2Mi

πm

]

(7.68)

kTe
e

=
2(Vp − Vf )

ln
[

2Mi

πm

] (7.69)

Notice that the unit for k3 = kTe/e is volts17 (kTe is an energy perhaps in joules and
volt=joule/coulomb). Perhaps confusingly the numerical value of k3 is also kTe in units
eV18 (e.g., if k3 = 5 V then 5 V=kTe/e or 5 eV=kTe). It is common practice in plasma
physics to report “the temperature” [meaning kT ] in eV.

The ion current k1 can be estimated from the “saturated current” in Region D, i.e., the
nearly constant current a volt or so below Vf . (For future convenience, we name this
“saturated current” in Region D, Ii.)

See that for V = Vp, I = k1 + k2. Since the ion current is “negligible” for most of region C,
we can estimate k2 from the measured current near Vp. (For future convenience, we name
the current actually measured at the data point just below Vp, Ip.)

Plasma Number Density, n

Given kTe, we have several approaches to measuring n:

A. measured Ii and Equation 7.36, and

B. measured Ip and Equation 7.32,

Additionally we could use the fit values of Ii or Ip (k1 or k2, in Equation 7.64). These
methods will give answers that differ by a factor of 5 or more! When different ways of
measuring the same thing give different results, “systematic error” is the name of the
problem. The source of this problem is our imperfect model of current flow in Region
C (all those inaccurate assumptions). In particular, both (A) and (B) are hindered by the

17This must be the case since in Eq. 7.64 the units of k3 must cancel the units of (V − Vp).
18Recall: 1 eV = 1.6022 × 10−19 J is the energy an electron gains in going through a potential difference

of 1 V.
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assumption of a Maxwell-Boltzmann speed distribution. (In fact measurements in Region C
are commonly used tomeasure19 that speed distribution.) Often fit parameters are preferred
to individual data points (essentially because the fit averages over several data points), but
that is not the case here. Thus the method considered most accurate is (A), although it
could be improved20 to account for the slowly varying—rather than constant—ion current
in Region D. (That is, how precisely is the ion saturation current determined?) However,
even with that ambiguity resolved, Equation 7.36 itself has expected variations of the order
of 20%. Mostly physicists just live with that level of accuracy, as improved measurement
methods (like microwave phase shifts due to the index of refraction of the plasma) are often
not worth the effort.

Apparatus: 0A4-G Gas Triode Tube

Figure 7.8 displays the anatomy of a 0A4-G gas triode21. As shown in Figure 7.9, a discharge
through the argon gas is controlled by a Keithley 2400 current source. Various cathode
currents (Ic = −5,−10,−20,−40 mA) will produce various plasma densities. During tube
operation, you should see the cathode glow expand as larger discharge currents are produced.
Note also that the cathode voltage (Vc ∼ −60 V) varies only a bit, over this factor of 8
increase in Ic. A glow discharge does not act like a resistor! A Keithley 2420 is used to
sweep the probe voltage and simultaneously measure the probe current. Figure 7.10 shows
representative results. You should note that the cathode glow is not perfectly stable. It
can jump in position for no obvious reason. If a jump occurs during a probe sweep, the
resulting data will look noisy (I ′′ randomly jumping in sign rather than smoothly going
from I ′′ > 0 to I ′′ < 0) and cannot be used. Figure 7.11 shows fits to the data between Vf
and Vp. The resulting reduced χ2 were of order 105: the sourcemeter measurement errors
are much smaller than the deviations between the reality and the model. While the model
is “wrong”22, it nevertheless supplies a reasonable representation of the data. A fudge of
the errors allows parameter error estimates to be extracted from the covariance matrix, but
it’s hard to give meaning to the resulting error.

Computer Data Collection

As part of this experiment you will write a computer program to control the experiment.
Plagiarism Warning : like all lab work, this program is to be your own work! Programs
strikingly similar to previous programs will alarm the grader. I understand that program-
ming may be new (and difficult) experience for you. Please consult with me as you write
the program, and test the program (with tube disconnected!) before attempting a final
data-collecting run.

19For example, Langmuir probes have been used to measure the electron speed distribution in the plasma
that gives rise to aurora (northern lights). The results show a non-Maxwellian speed distribution: lots of
high-speed “suprathermal” electrons.

20This issue is addressed by Chen in report LTP-111 Chen206R.pdf listed as a web reference at the end of
this document. Models of the Universe can usually be improved at a cost of greater complexity. Choosing
an appropriate level of complexity is something of an art. Here we are using the simplest possible model.

21This tube is also called a cold cathode control tube. In its usual applications, what is here called the
anode is called the starter anode and what is here called the Langmuir probe is called the anode.

22In 1978 UW-Madison statistics professor George E. P. Box (1919–2013) commented: “All models are
wrong but some are useful”.
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Figure 7.8: The 0A4-G triode has a large cold cathode and two “anodes” surrounded by low
pressure argon gas. A glow discharge in the argon gas may be maintained by an approximate
−60 V drop between the cathode (pin 2) and the “starter anode” (pin 7). The pin 5 anode
may then be used as a Langmuir probe in the resulting plasma. The figure shows an R.C.A.
0A4G; A Sylvania 0A4G has the same components arranged differently.
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Figure 7.9: When the cathode is held at a voltage of Vc ≈ −60 V relative to the anode,
the argon gas in the tube partially ionizes and a discharge is set up between the anode and
cathode. The discharge current is controlled by a Keithley 2400 in current-source mode,
e.g., Ic = −20 mA. The voltage V on the Langmuir probe is swept by the Keithley 2420, and
the current I is simultaneously measured. The resulting IV curve allows us to determine
the characteristics of the plasma. Note that the pinout shows the tube as viewed from the
bottom.
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Figure 7.10: The IV curves for the Langmuir probe in a 0A4G tube for Ic =
−40,−20,−10,−5 mA. The plasma potential Vp is marked with a square; The floating
potential Vf is marked with a circle. Since the ion current is so much smaller than the
electron current, blowing up the y scale by a factor of 200 is required to see it (see plot B).
In this lab we are primarily concerned with Region C: between Vf and Vp.
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Figure 7.11: In Region C, between Vf and Vp, I > 0 so we can display it on a log scale.
Assuming a constant ion current (k1), constant sheath area, and a Maxwell-Boltzmann
distribution of electron speed, we can fit: I(V ) = k1+k2∗exp((V −Vp)/k3). The horrendous
reduced χ2 shows that these assumptions are not exact, nevertheless the fit does a reasonable
job of representing the data (say, ±10%)
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Table 7.1: R.C.A. 0A4-G Gas Triode Specifications

probe length 0.34 cm
probe diameter 0.08 cm
tube volume (approx.) 40 cm3

peak cathode current 100 mA
DC cathode current 25 mA
starter anode drop (approx.) 60 V
anode drop (approx.) 70 V
minimum anode to cathode breakdown voltage
(starter anode potential 0 volts) 225 V

In the following I’m assuming the probe voltage V is stored in array v(i), probe current
I is stored in array a(i), and the second derivative of prove current I ′′ is stored in array
app(i). Your program will control all aspects of data collection. In particular it will:

0. Declare and define all variables.

1. Open (i.e., create integer nicknames—i.e., iunit—for) the enets gpib1 and gpib2.

2. Initialize the source-meters which must be told the maximum voltage and current to
occur during the experiment. For the 2420, you can limit V, I to 25. V and .005 A;
For the 2400, limit V, I to 100. V and 0.1 A;

3. Display the status of all devices before starting data collection.

4. Open files:

(a) VI.dump.dat (intended for all V, I, I ′′ of probe, with comments (!) for cathode
Ic, Vc)

(b) VI.fit.dat (intended for Region C: V, I, δI, I ′′ of probe, with comments for
cathode Ic, Vc, calculated Vf , Vp, estimated Te, measured Ii, Ip, and the number
of data points. The data points in this file are for fitting Equation 7.64:

f(x) = k1+ k2 ∗ exp((x− k4)/k3) (7.70)

Note that k4=Vp is a given constant, not an adjustable parameter.)

5. Tell the 2400 source-meter to source a cathode current, Ic = −20 mA

6. Let the system sleep for 60 seconds to approach thermal equilibrium.

7. Repeat the below data collection process six times. Since you will need just three
repeats for each Ic, this will probably produce more data than is needed. However
some data sets may be noisy because of unstable (moving, flickering) cathode glow.
Noisy data will have multiple sign changes in calculated I ′′; Discard this data. If
one run of this program fails to produce enough good data (three repeats), simply
rename the data files (to preserve the data produced in the initial run), and re-run
the program.

Do the following for four different Ic: 5, 10, 20 40 mA (e.g., acath=-.005*2**j for
j=0,3). Thus there will be 4× 6 voltage sweeps.
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(a) Tell the 2400 source-meter to source a cathode current, Ic

(b) Let the system sleep for 10 seconds to approach thermal equilibrium.

(c) Tell the 2420 to perform a linear probe voltage sweep from Vmin to Vmax, includ-
ing N data points (say, N = 100). In Figure 7.10, you can see that the choice
made was Vmin = −15. and Vmax = +5., but your choices will vary and must
be determined by trial and error (see below). The aim is to find a range that
includes from a few volts below Region C to a few volts above Region C for every
cathode current Ic.

(d) Turn off the probe voltage.

(e) Repeat (a) thus obtaining up-to-date values for Ic, Vc

(f) Write a comment (‘!’) line to the file VI.dump.dat containing Ic, Vc from the
2400.

(g) Write a line to the file VI.dump.dat containing the first probe (V, I) data point:
v(1), a(1)

(h) Do for i=2,N-1 the following:

i. Calculate I ′′ and store the value in the ith spot of an array i.e.,
app(i)=a(i+1)+a(i-1)-2*a(i).

ii. Write to the file VI.dump.dat the probe data: V, I, I ′′, i.e., v(i), a(i),

app(i).

(i) Write a line to the file: VI.dump.dat containing the last (i=N) data point V, I.

(j) Find the data point just before Vf (i.e., the last with I(V ) < 0) with code23 like:

do i=2,N-1

if(a(i)>0.and.a(i+1)>0)goto 100

enddo

STOP ’a<0‘

100 ivf=i-1

if(ivf<15) STOP

The final line halts the program if ivf< 15, as we need Region D data to find the
ion current, Ii. If the program STOPs, Vmin will need to be reduced to capture
this data, and the program re-run.

(k) Using Equation 7.61 and the data points at ivf and ivf+1, find Vf . Note: in the
general case Equation 7.61, we were seeking x such that y(x) = 0; Here we are
seeking Vf which is defined as the voltage such that I(Vf ) = 0, so, for example,
x1 →v(ivf), y1 →a(ivf), and x→ Vf .

(l) Find the data point just before Vp (i.e., the last with I ′′(V ) > 0) with code24

like:

do i=ivf+1,N-2

if(app(i)<0.and.app(i+1)<0)goto 200

enddo

STOP ‘app>0‘

200 ivp=i-1

23We check for two successive positive data points to avoid mistaking one point of noise for Vf .
24We check for two successive data points with I ′′ < 0 to avoid mistaking one point of noise for Vp
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Note that the program is halted if the plasma potential has not been found before
we run out of data. In that case Vmax will need to be increased to capture this
data, and the program re-run.

(m) Using Equation 7.61 and the data points at ivp and ivp+1, find Vp. Note Vp
is defined as the voltage such that I ′′(Vp) = 0, so, for example, x1 →v(ivp),
y1 →app(ivp) , and x→ Vp.

(n) Write comment lines to the file: VI.fit.dat recording:

i. Ic, Vc, Vf , Vp (also print this to the screen, so you can monitor data collec-
tion)

ii. ’! set k1=’,a(ivf-15),’ k2=’,a(ivp),’ k3=’,0.18615*(Vp − Vf )
The aim here is to record basic plasma parameters (which are also needed
as an initial guess in the fit to Equation 7.70) in a format that allows easy
copy and paste into plot and fit. k1 is the measured ion current Ii; k2 is
the measured current at Vp (denoted Ip); k3 is an estimate for kTe/e, the
electron temperature in eV.
Notes: The estimate for k3 is based on Equation 7.69 where 0.18615 =
2/ ln(2Mi/πm). We are assuming that ivf-15 is far enough below Vf (i.e.,
in Region D) that Ii = a(ivf− 15). You should check (after the fact) that
this is the case, i.e., Vf − v(ivf− 15) ≫ k3. If this condition is not met,
simply use a larger offset than 15 and re-run the program.

iii. ’! set k4=’, Vp, ’ npoint=’, ivp-ivf

k4 is the (not adjusted) plasma potential, Vp, whereas k1-k3 are varied from
the above initial guesses to get the best fit to Equation 7.70 in Region C.

(o) For i=ivf+1,ivp write the probe data V, I, δI, I ′′ to the file VI.fit.dat with
one V, I, δI, I ′′ data ‘point’ per line.

8. Turn off the output of the 2400.

9. Close all files.

Data Analysis

If all has gone well you have three good data sets for four different Ic, something like 1000
data points. We could spend the next semester analyzing this data! Instead I suggest below
a simplified analysis scheme.

Start by making a composite plot similar to Figure 7.10A showing one IV curve for each of
the four Ic. For these plots, choose Vmin & Vmax so that all behaviors (Regions A–D) are
displayed. Make a similar plot showing three IV curves for one of the four Ic. The aim here
is to test for reproducibility; because of time limitations we’ll just check the reproducibility
of this one selected Ic. (I’ll call this selected Ic data set I∗c .) These six data sets (one IV
curve is on both plots) will be analyzed in greater detail. In order to properly fit the data,
you will want to have more than 15 data points in the region between Vf and Vp (this may
require reducing the range Vmin through Vmax for the probe voltage sweep so it focuses just
on Region C: say from about 4 V negative of the lowest Vf to 2 V positive of the highest
Vp and then re-taking the data). Additionally you should find that all six data sets have
approximately the same number of data points. (Find the npoint= in the file VI..fit.dat.
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Electron Temperature in eV: k3
Fit Equation 7.70 to the six data sets. Note that the file VI.fit.dat itself contains the
required initial guesses for adjusted parameters k1-k3 and the fixed value for the plasma
potential k4 in a format that should allow easy copy & paste into fit. When using fit

adjust only k1-k3 (it would be ‘degenerate’ to have fit also change Vp=k4). Expect to see
large reduced χ2 which signals a too-simple model. No definite meaning can be attached to
error estimates from such poor fits, nevertheless some sort of nonsense needs to be reported.
On page 16 we explored options for dealing with such ‘unusual’ fits. Option #5: ‘In dire
circumstances’ you can use fudge command in fit to change your errors so that a reduced
χ2 near one will be obtained. A re-fit with these enlarged errors then gives a new covariance
matrix from which an estimate of parameter errors can be determined. Parameter values
within the range allowed by these errors would produce as good (or bad) a fit to the data
as the ‘best’ values. As the name suggests fudge is not exactly legitimate25 , nevertheless
it is what Linfit has been silently doing all these years. Option #4: ‘Bootstrap’ the data:
repeatedly fit subsets of the data and see how the resulting fit parameters vary with the
multiple fits. This is essentially a way to repeat the experiment without taking new data.
The fit command boots will report the results of nboot (default: 25) re-fits to subsets
of your data along with the standard deviation of the fit parameters. Using either option,
estimate the error in the fit value of k3: use the square root of the appropriate diagonal
element of the covariance matrix of a fudged fit or the reported standard deviation of k3
from a bootstrap.

Note: You should retain (and eventually turn in) copies of these six fit reports. I would
retain in a long concatenated file the following from each fit: (1) the row, ks, npoint that
you used when reading in the file, (2) the basic results from the first fit (the terrible reduced
chi-square, ks, etc.) (3) the output of which ever method you used to estimate parameter
errors. (For a fudged fit, after a fudge and a re-fit, you should request a Screen display
and then copy everything from Results of a fit to the function through CURVATURE

MATRIX:— remember that the square-root of the diagonal elements of the covariance matrix
gives you the corresponding error. For a bootstrap, just retain the final section with means
and standard deviations.)

For I∗c , compare the two errors for k3: the standard deviation of 3 fit values of k3 and, say,
the median of the errors from the fudged covariance matrix. Are they in the same ballpark
(say, within a factor of two26)? Calculate the electron temperature of the plasma both in
eV and K. Comment on the relationship (if any) between Te and Ic.

Remark: Arguing either from the fit function (exp((x-k4)/k3), so the units of k3 must
match the units of x which were volts) or from the theory (k3 = kT/e, i.e., energy/charge,
and V=J/C), the units of k3 are volts. However, to take a particular case, if 3 V = k3 =
kT/e, then 3 eV = kT . That is the tiny numerical value of e is incorporated into the tiny
atom-scale energy unit eV. Seemingly we are now saying 3 eV = k3 = kT . If you want kT
in joules, use the tiny value of e ≈ 1.602 × 1019 C, and since C×V = J you’ll get a tiny
number of J.

Plasma Number Density: n
We are interested in two sorts of ‘error’ in the plasma density n: reproducibility and an

25for further discussion see: http://www.physics.csbsju.edu/stats/WAPP2 fit.html
26An estimate for the uncertainty in a calculated σ is: δσ = σ/

√

2(n− 1), so here with n = 3 points, 50%
errors in σ are expected.
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Table 7.2: Simplified data table for reporting Langmuir Probe results.

k3 Ic k3 fit σ
(V) (mA) (V) error

40

20

10
5

Ii Ic median σ % error ni % error
(A) (mA) Ii in Ii (m−3) in ni

40

20

10

5

Ip Ic median σ % error np/ni
(A) (mA) Ip in Ip

40

20

10

5

estimate of ‘systematic’ error. In the first case we’re asking: “given the same Ic is applied,
how much do conditions in the plasma vary?” In the second case we interested in what the
actual value of n is. We can estimate this systematic error by measuring n by two different
methods:27 n calculated using Ii (Method A: let’s call this ni) and n calculated using Ip
(Method B: let’s call this np). Let’s be clear here: ni, np, ne, n are all supposed to be the
same thing: the number of electrons (or ions) per m3 in the plasma. So

np
ni

=
−Ip/Ii

√

2Mi/πm
(7.71)

should be one; but it won’t be: systematic error is present!

In your lab notebook record these results in tables similar that shown in Table 7.228. (For
this example, I selected I∗c = 20 mA.) Note particularly to record exactly the proper number
of significant figures in these tables! You should also copy & paste each full fit report into a
long concatenated file and include the resulting file in your notebook. As previously noted,
the reduced χ2 for these fits is likely to be “horrendous”. Pick out your highest reduced χ2

fit, and plot the fitted function along with the data points on semi-log paper. (The results
should look similar to Figure 7.11, but with just one data set.) Do the same for the best
fit.

27See page 164; we are discussing here only methods A and B; methods using the fit parameters k1 and
k2 would be additional options.

28The spreadsheet gnumeric may be of use.
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Calculate29 n for each Ic based on the median Ii. Comment on the relationship (if any)
between n and Ic. Make a power-law fit and log-log plot of the data30

Derive Equation 7.71. Calculate the np/ni and see that n has systematic error, i.e., n
calculated from Ip will be several times larger than the value of n calculated from Ii. This
proves that there are problems with our simple theory.

Miscellaneous Calculations: ‘Lawson Product’ nτ , λD, fp
In 1957 J. D. Lawson determined that power generation from thermonuclear fusion required
temperature, plasma density n and the plasma confinement time τ to meet certain criteria:
a temperature of at least 104 eV with the product: nτ > 1021 m−3 · s. We can estimate τ
because we know that our plasma is moving toward any surface at the Bohm velocity uB .
Given that typically the plasma is within about 1 cm of a wall, find how long it remains
confined, and calculate the “Lawson product” nτ for the I∗c plasma. (It is possible to
directly measure the plasma confinement time by using a scope to time the decay of the
plasma when the glow discharge is suddenly turned off.)

Calculate the Debye length (λD, Eq. 7.14) and the plasma frequency (fp, Eq. 7.1) for I∗c .
Compare λD to the diameter of the Langmuir probe. Will the sheath substantially expand
the collecting area A? According to Koller (p. 140, reporting the results of Compton &
Langmuir31) the mean free path of an electron in a 1 torr argon gas is 0.45 mm. Compare
your λD to this electron mean free path.

Report Checklist

1. Write an introductory paragraph describing the basic physics behind this experiment.
For example, why does the Langmuir probe current increase exponentially with probe
voltage? Why is it that probe currents allow the calculation of plasma density? (This
manual has many pages on these topics; your job is condense this into a few sentences
and no equations.)

2. Computer program: Print out a copy of your program and tape it into your lab
notebook.

3. Plots:

(a) Similar to Figure 7.10A showing one IV curve for each of the four Ic.

(b) Similar to Figure 7.10A but showing three IV curves for I∗c .

(c) Two plots similar to Figure 7.11, showing the Region C fit to the data. (These
plots are to display the best and worst reduced χ2; Record the reduced χ2 on
each plot.)

(d) Power law fit and log-log plot of four (Ic, n) data points.

4. Tabulated results from six fits for k3 (Te) at four different cathode currents including
fudged or bootstrapped results for δk3 and the standard deviation of three k3 for I∗c .
You should copy & paste each full fit report into a long concatenated file. Print that
file and tape it into your notebook. Record the identifying letter on your tube.

29http://www.physics.csbsju.edu/cgi-bin/twk/plasma.html can do this in one click.
30I’d use WAPP+ : http://www.physics.csbsju.edu/stats/WAPP2.html.
31Rev. Mod. Phys. 2 (1930) 208
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5. Tabulated results for measured Ii and Ip at four different cathode currents including
reproducibility errors estimated from the standard deviation.

6. Calculations (self-document spreadsheet or show sample calculations):

(a) kTe in units if eV for four Ic with estimates for errors.

(b) Te in units of K for four Ic.

(c) n calculated from median Ii and k3 for four Ic (with and estimate of reproducibil-
ity error)

(d) np/ni calculated from median Ii and Ip (which provides an estimate of systematic
error)

(e) λD

(f) fp

(g) Lawson product at I∗c

7. Derivation of np/ni (Eq. 7.71).

8. Answers to the questions posed in the Data Analysis section:

(a) Are they in the same ballpark?

(b) Comment on the relationship (if any) between Te and Ic.

(c) Comment on the relationship (if any) between n and Ic.

(d) Will the sheath substantially expand the collecting area A?

(e) Compare your λD to this electron mean free path.

9. Discussion of errors:

(a) Two methods were used to find “errors” in the electron temperature, Te: (A)
fudged/bootstrap error from a fit and (B) σ from lack of reproducibility. What
is the meaning and significance of fudged/bootstrap error? What is the meaning
and significance of reproducibility error? How would you respond to the question:
“What is the error in Te?” (Note a few sentences are required, not a number!)

(b) Two methods were used to find the plasma number density, n: methods based
on Ii and Ip. What is the meaning and significance of the fact that two different
ways of measuring n produced different results. How would you respond to the
question: “What is n?” (Note a few sentences are required, not a number!)

(c) Consider any one of the basic plasma parameters (n, Te, Vf , Vp) measured in this
lab. Report any evidence that there is systematic error in the parameter. Report
your best guess for the total error (systematic and random) in the parameter.
Report how this error could be reduced.

Comment: Uncertainty

Area: Systemic Error

Both methods of calculating plasma density (ni and np) used the probe area A, which en-
tered as an overall factor. The probe area was calculated based on the probe geometry data
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listed in Table 7.1 which was supplied by reference #9 with no uncertainties. Clearly if the
actual probe geometry differs from that in Table 7.1 there will be a systematic error in both
methods of calculating n. If I guess the uncertainty in length and diameter measurements
based on the number of supplied sigfigs, I find a 6% uncertainty in A. In 2008 a Sylvania
0A4G tube was destroyed, and I took the opportunity to measure the probe. The results32

were quite different from those reported in Table 7.1: A was about 20% larger for this
Sylvania tube then for the RCA tube of reference #9. (The Sylvania/GE 0A4G also looks
different from the RCA 0A4G.)

There is an additional significant problem: because the plasma sheath extends several λD
beyond the physical probe, there will be particle collection beyond the surface area of the
probe—the effective area is larger than the geometric surface area; we have made a Spherical
Cow by the simple assumption of A = πdℓ. A glance at Fig. 7.6 on page 160, shows that
the plasma sheath extends about 10 × λD for ∆V ∼ 5 × kTe/e, which amounts to a large
correction to probe diameter. Since the plasma sheath for ions33 in Region D has no reason
to be identical to the plasma sheath for electrons at the plasma potential, the effective A
in the two methods is probably not the same, and hence A does not really cancel out in
deriving Eq. 7.71.

While we have lots of systematic and spherical cow error in our measurement of Te and n,
it should also be emphasized that we do have ‘the right end of the stick’.

Interpreting Results

Inspection of Figure 7.11 shows the unmistakable signs of “large reduced χ2 ”: The fitted
curve misses many error bars. The miss might be called “small”, but the error bar is
smaller still (in fact too small to show in this figure). The plasma density calculated from
Ii disagrees with that calculated from Ip. What should be recorded as our uncertainty in
Te and n? The problem is the result of using simplified theory. What can we conclude from
the fits using inexact34 theory?

First the exponential IV relationship is clearly reflecting the Boltzmann factor at work. To
the extent that there is an electron temperature, our k3 estimate must be fairly accurate.

On the other hand our n values disagree by a factor of three, and there are reasons to
suggest (e.g., uncertain A) the systematic error may be even larger. The disagreement
between ni and np could be improved by better theory. (The assumed Maxwell-Boltzmann
speed distribution, collisions, varying collecting areas due to sheath expansion, . . . can be
corrected —see particularly References 3 & 5.) However, for many practical purposes one
is interested in reproducible control rather measurement. One might be told that: “silicon
wafer etching is to proceed when the indicated n reaches 1014 m−3” with no concern for
what n actually is. Usually the reproducibility error found in the lab is only a few percent,
which is often good enough for industrial control.

Of course, physics is most interested in reality, and what we have found is systematic error:
two different ways of measuring n disagree. While one might argue that calculation of n

32diameter= 0.025”, length= .2”, the surrounding metal can is about 2 cm×3 cm.
33For example, the mean free path for an electron is much larger than the mean free path for an ion

(approximately 4
√
2×).

34Note that all theory is inexact.
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based on Ii is more robust than that based on Ip, fundamentally what is needed is additional
methods of determining n to resolve the problem (see Reference 8). This is also beyond the
aims of this lab. The best physics you can do based on this data is to report our estimated
errors with a clear warning that the systematic errors may be larger than the reported
uncertainty.
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fit is a non-linear least-squares fitting program that allows you to fit (at most) nine param-
eters of a function to data contained in a file. The function must be expressed as a single
line of intrinsic Fortran functions, real numbers, operations (+, -, *, /, ** or ^) and ad-
justable parameters K1-K9. Both plot and fit use the prompt “*” to request commands
for action from the user.

A typical fit session begins by using the editor to create a data file. When creating the
data file, follow this convention: reserve the first line of the file for an identifying sentence,
and follow that line with columns of data separated by tabs or spaces. Typically you will
put x values in the first column, y values in the second column, and y-errors (if available)
in the third column. fit assumes this file is called fit.dat, but other filenames may be
SET.

Once you have created the file, start the program by typing fit to the linux $ prompt:

$ fit

*

(At any time you may exit fit by typing quit. Note: the common windoze command
Ctrl C kills programs rather than copies; simply highlight by sweeping with mouse and then
hit the center mouse button to paste at the desired location.) SET fit’s FILE variable equal
to the filename of the file you just created by typing:

* SET FILE=filename

If you have no y-errors (an unlikely situation!), inform the program by typing

* SET YECOL=0

(Don’t forget to hit the Return or Enter key after each line.)

If any other columns are out of place, reSET fit’s other column location variables: XCOL

and YCOL. Note that fit will use no more than 512 data points. When fit is properly
informed about your file type:

* READ

177
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and fit will read your data into its internal data storage area.

The next step is to tell fit the function you want it to fit to your data. As stated above,
you must be able to express this function in one line using the intrinsic Fortran functions
(e.g., log, log10, asin, ...), constant real numbers (e.g., 2, 6.03e23), operations (+,
-, *, /, ** or ^), and (possibly) varying parameters (K1-K9). Examples:

* set f(x)=k1*exp(-((x-k2)/k3)**2)

* set f(x)=k1*(1-exp(k2*x))

* set f(x)=k1/sqrt((x-k2)^2+k3^2)

The function should be typed without using spaces. Note that the program automatically
takes the absolute value of negative numbers raised to a power (e.g., (−2)3 = 8), but the
SQRT of a negative number is zero. Use repeated multiplications to simulate integer powers
(e.g., x3 = x ∗ x ∗ x), if the proper sign is required. Note that the default f(x) is the
polynomial k1+ k2 ∗ x+ k3 ∗ x2 + · · ·+ k9 ∗ x8, defined with repeated multiplication.

Now it’s time to SET your initial guess for the K parameters that occur in your function,
with a command like:

* SET K1=3.14159 K2=4

Unlike linear least squares programs like WAPP+you must provide a moderately accurate
initial guess for each adjustable parameter. Time spent in careful consideration of parameter
values will be repaid many-fold. Bad initial parameter guesses will result in program crashes,
long computer fit times, and inaccurate computer results. fit will step into the first chi-
square (χ2) valley (χ2 minimum) it finds, and then stay there; so you must start fit close to
the right valley. It is advisable to try several different starting guesses for your parameters
to find the path that leads to the lowest value of χ2.

Once you have a good initial guess for your K parameters, you may ask the computer to
iterate to a minimum χ2. Of course, you must also tell the computer what K parameters it
should vary to find that minimum:

* fit

Enter list of Ks to vary, e.g. K1-K3,K5:

After you tell the computer what ks to vary, the machine will start its search. How does
fit know when to stop? It will, of course, never reach the exact valley bottom (i.e., χ2

minimum). If fit “finished” there is some evidence of convergence: either χ2 changed
hardly at all during its last downward step (∆χ2=DELCHI, default=.1), or the parameters’
first KSIG digits (default=4) didn’t change during its last downward step. Note: unchanging
digits for one step, should not be interpreted as unchanging digits for lots more steps, nor
should it be interpreted as an error. If fit “quit” then it’s sick of trying (SET by NITER,
default=100), so you should assume more steps are needed to reach the valley bottom. This
suggests something is wrong. . . your initial guesses, the function, the data.
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Once fit has quit or finished, it will print out summary results. Longer versions of the
results (including the covariance matrix needed to figure errors1) may be printed, typed on
the screen or placed in a file, at the users option. Always retain a copy of successful fit
results! Sometimes the found χ2 is so “bad” that you will be tempted to FUDGE, i.e., adjust
your y-errors until you get a reduced-χ2 of one. If you FUDGE be sure to write down why
you think this cheating was justified.

A good way to estimate errors is to repeat the experiment lots of times. However very often
the required time is not available. fit provides a possibility legitimate way to simulate
actual repeats: it repeatedly fits using random subsets of your data. This process is called
bootstrapping and it is invoked by the command BOOTST.

The command

* PRINT

will display your data (x, y, y-error, and f(x)) on the screen. fit will mark (?, !, :) points
that are 3, 2, or 1 y-errors away from f(x). Use this feature to see which data points are
poorly fit. Alternatively, you may use the program plot to display your data with fitted
curve.

You may find it helpful to do some parameter stepping yourself before you hand the final
fit over to fit. Put in a parameter guess, enter

* CHI

to find the resulting χ2, modify your guess and repeat the process.

fitting functions to data is an important and frustrating part of your education in physics.
Good luck!

Report problems and/or suggestions to Tom Kirkman.

1If the reduced χ2 suggests a reasonable fit, the parameter uncertainties may be calculated from the
square root of the corresponding diagonal element of the covariance matrix.
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Special Commands

Start—in a terminal type: fit
$linux command — do any linux command from inside fit
@filename — execute indirectly a file of fit commands
Examples:

* $ls *.dat

* @test.fit

fit Commands

(unambiguous abbreviations and lowercase allowed)

Syntax:

* COMMAND

* COMMAND VARIABLENAME = value, VARIABLENAME = value ...

Examples:

* SET K1=0, K2=1, K3=-1, F(X)=K1+K2*X**2+K3*X**4

* re yec=0, fi=expt.dat

BOOTST performs a bootstrap with NBOOT iterations

CHI calculates χ2 using F(X), Ks, and data.

FIT fits F(X) to your data (requests list of Ks to vary)

FUDGE destroys existing y-errors and renorms them so χ2 = NPOINT

HELP displays these messages

PRINT displays data stored in program and F(X) (marks large-deviation points)

QUIT exit the fit program

READ reads data from FILE: see XCOL, YCOL, YECOL, ROW, IBEGIN, NPOINT, FILE

SET allows you to set variables values without doing any action

SHOW shows variable values

WRITE writes x, y, y-error, and f(x) to FILE
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fit Variables

A constant for use in F(X) (0)

B same
(Note: A and B are used in WINDOW(X): WINDOW(X)=1 iff a ≤ x ≤ b, else zero)

C same

CHISQ most recent value of χ2 calculated

DELCHI fit stops if a step results in a χ2 change less than DELCHI (.1)

F(X) function use: A, ABS, ACOS, ASIN, ATAN, B, C, COS, COSH, EXP, INORM,

K, K1-K9, LOG, LOG10, NORM, PI, SIN, SINH, SQRT, TAN, TANH, WINDOW,

X, any real number, operations +, -, *, /, **, or ^

( K1+X*(K2+X*(K3+X*(K4+X*(K5+X*(K6+X*(K7+X*(K8+X*K9))))))) )

FILE READ/WRITEs data with this filename (fit.dat)

IBEGIN first array element used during CHI, FIT, READ, PRINT, WRITE (1)

K1-K9 possibly adjustable variables in F(X)

KSIG fit stops after a step if all Ks retain KSIG unchanged digits (4)

NBOOT number of bootstrap iterations performed (25)

NITER fit stops if more than NITER test steps are needed (100)

NPOINT number of points used during CHI, FIT, READ, PRINT, WRITE (512)

ROW first row of data in FILE (2)

SEED if negative, re-initializes random generator’s seed (-1)

XCOL column of x data in FILE — used during READ (1)

YCOL column of y data in FILE — used during READ (2)

YECOL column of y-error data in FILE — used during READ (3)
Note: unread y-errors default to 1

there is no need to ask the question “Is the model true?”. If “truth” is to be
the “whole truth” the answer must be “No”. The only question of interest is
“Is the model illuminating and useful?”.

George Box (1979) in Robustness in Statistics
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plot is a general purpose, advanced plotting program. plot can be frustrating to use
because it assumes you know what you want to do and actually mean what you say—so if
you don’t know what you’re doing and don’t know what you say means to the machine, you
can draw a mess fast. Of course, after you know the program you should be able to draw
a beautiful graph as fast as you drew that mess.

The most unusual feature of plot is the way you give values to the parameters needed to
draw a graph, e.g., the size of the graph, maximum and minimum values, etc. Instead of
asking you if you want to change each of those 39 parameters, plot allows you to set them
in any order, at any time you want. For example, if you want to change the minimum value
of x to 0, you type

* SET XMIN=0

(Don’t forget to hit the Return or Enter key after each line.)

So the first thing you need to know is the name of the parameters. You will find a complete
list at the end of this appendix but let me mention three important sets of parameters now.
The first set determines the way the axes look: XMIN, XMAX, XSCALE and similarly for y.
XMIN and XMAX should be self explanatory. XSCALE determines the nature of the scale:

XSCALE=1 is a linear (normal) scale;

XSCALE=2 is a logarithmic scale (distance in plot is proportional to log x);

XSCALE=3 is an inverse scale (distance in plot is proportional to 1
x); and

XSCALE=4 is a probability scale (distance in plot is related to erf−1(x)).

(Note: you will rarely actually set XMIN and XMAX as there are autoscale commands, but
you will often be setting the type of scale.)

The second set determines how the program finds the proper data to plot. Basically to get
numbers (x, y, and errors) into the program you need to make a file with the editor. The
first line of this file should be a one-line description of the data in the file (i.e., free fall

experiment - trial #2). The following lines should consist of data—an x value, some
spaces (or tabs or commas), the corresponding y value, some spaces, and the corresponding
absolute error in y. Thus when looked at as a whole, the first column will consist of x
values, the second column the corresponding y values, etc. If you called this file plot.dat
you have made a file exactly in the default manner. The program will be able to READ this

183
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file without telling it anything. If you put the x values in column 2, you will have to inform
the program by typing

* SET XCOL=2

That is, XCOL is a variable that tells the program which column contains the x values.
Similarly, YCOL, YECOL (y-error) and XECOL (x-error) are variable names. If you have no
errors, tell the program by typing

* SET YECOL=0

If you didn’t call your file plot.dat, you must tell the program by typing

* SET FILE=filename

Note the above SETing does not actually change the data inside the program. The data
inside the program is only changed when you:

* READ

Finally the third set determines how functions are plotted.

* SET F(X)=SIN(PI*X)

* SET PMIN=-1 PMAX=1

* FCURVE

FCURVE will plot the function in the domain PMIN to PMAX (the “p” is for parameter—
remember xmin and xmax have another meaning). Note that the border parameters (ymin,
ymax, etc.) must be appropriately1 set before the function curve is added to the plot. F(X)
can be set using the usual computer syntax2 for algebra. There are eleven built-in functions
that correspond to the usual WAPP+ functions with the usual parameters A, B, and C.
These can be plotted by SETting the function number NFUNCT to a value between 1 and 11.
NFUNCT=0 (the default) plots the function F(X).

You use SET to tell the program on how you want your data displayed. To actually display
data you need action commands. The sequence:

* READ

* SCALE

* BORDER

* DPOINT

1FSCALE will find appropriate ymin, ymax, etc., based on the function f(x) and domain PMIN to PMAX, but
more commonly the border parameters — including PMIN and PMAX — are set to fit the data with SCALE

2Note that you must use * for multiplication not just juxtaposition.
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tells the program to read the data (from the previously set FILE); SCALE tells the program
to find appropriate XMIN, etc. given the data contained in the program; BORDER tells the
program to display the graph outline you have described; DPOINT tells the program to plot
the data points. Type FCURVE to plot your function. Another useful command is HELP—it
types out a listing of the commands and the variables.

Actually all this SETting and commanding can be done together as shown below: (note one
command per line, but you may define several variables)

* READ YECOL=0, FILE=freefall1.dat

* SCALE

* BORDER TITLE=’Free Fall’, XLABEL=’Time (s)’, YLABEL=’Z (m)’

* DPOINT

* FCURVE PMIN=0, PMAX=.65, NFUNCT=10, A=0, B=0, C=4.9

Two final comments: The equal signs and commas in the above example make the reading
of the line easier—but they make the typing of the line harder. You may substitute spaces
for them to make typing easier. Similarly, one gets tired of typing in the full command in
capitals—lowercase and any unambiguous abbreviations may also be used. Thus instead of
the above you may type:

* re yec 0 fi freefall1.dat

* sc

* bo tit ’FREE FALL’ xl ’TIME (s)’ yl ’Z (m)’

* dp

* fc pmin 0 pmax .65 nfu 10 a 0 b 0 c 4.9

Getting Hardcopy Plots

Now that you have a plot displayed on the terminal, you should want a copy of the screen
to put in your lab notebook. The command PCOPY will make a copy of the displayed plot to
the file specified by PFILE. If PFILE=" " (as it is by default), the output goes to the printer.

Special Commands

Start—in a terminal type: plot
$linux command — do any linux command from inside plot
@filename — execute indirectly a file of plot commands
Examples:

* $ls *.dat

* @fet.plt

Report problems/suggestions to Tom Kirkman.
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plot Commands

(unambiguous abbreviations and lowercase allowed)

Syntax:

* COMMAND

* COMMAND VARIABLENAME = value, VARIABLENAME = value ...

Examples:

* BORDER XMIN=0, XMAX=1, YMIN=-1, YMAX=1, TITLE=’now is the time’

* bo xmi 0 xma 1 ymi -1 yma 1 ti ’now is "the time"’

BORDER draws a border for a graph

CLEAR clears the screen

CROSSH digitizing mode—using the mouse move the ‘crosshair’ to the desired point. Hold
the Shift key and click; the x and y value at crosshair is reported.

DCURVE connects with a LINE NPOINT data points, starting with IBEGIN.

DPOINT plots NPOINT individual data points starting with IBEGIN; point symbol deter-
mined by POINT, error bars by XECOL and YECOL

FCURVE plots the function NFUNCT for p from PMIN to PMAX in NSTEP steps. p = x for
NFUNCTs 0–11, NFUNCT=0 displays F(X), link in funct(x,y,p,nfunct) for NFUNCT >
11

FSCALE finds appropriate mins and maxs for x and y axes for FCURVE

HELP displays these messages

LABEL writes LABEL to the right of most recent CROSSHair

PCOPY copies plot to printer (lpr -Plp) or to PFILE

PRINTD displays data stored in program

QUIT exit the plot program

READ reads data from FILE— see XCOL, YCOL, XECOL, YECOL, ROW, IBEGIN, NPOINT

SCALE finds appropriate min and max for x and y axes from NPOINT data pairs starting
at IBEGIN (automatic 5% excess unless scale=0). Room for error bars included if
x & y ECOL not zero

SET allows you to set variables values without doing any action

SHOW shows variable values
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plot Variables

(Default settings are indicated in parentheses.)

A used to give values to function parameters (see NFUNCT) (0)

B same
(Note: A and B are used in WINDOW(X): WINDOW(X)=1 iff a ≤ x ≤ b, else zero)

C same

F(X) function: use A, ABS, ACOS, ASIN, ATAN, B, C, COS, COSH, EXP, INORM, K,

K1-K9, LOG, LOG10, NORM, P0-P9, PI, SIN, SINH, SQRT, TAN, TANH, WINDOW,

X, any real number, operations +, -, *, /, **, or ^ (default: 8th degree poly-
nomial)

FILE READ seeks data from a file with this name (plot.dat)

FONT character size— 1:small, 2:standard, 3:big, 4:huge; 3&4 plotter only (2)

IBEGIN first array element used during READ, DPOINT, DCURVE, SCALE, PRINT (1)

LABEL string to be placed in plot using CROSSH and LABEL (LABEL)

LANG graphics language (1)

LINE pattern— 1:solid, 2:dotted, 3:dashed, 4:long-dash, 5:DASH-dot, 6:DASH-dash,
7:DASH-dash-dash (plotter only) (1)

NFUNCT 0:F(X), 1:y = a+ bx, 2:y = axb, 3:y = a exp(bx), 4:y = a+ b ln(x), 5:y = a+ b/x,
6:1/y = a + bx, 7:1/y = a + b/x, 8:y = a exp(b/x), 9:1/y = a + b ln(x), 10:y =
a+ bx+ cx2, 11:y = axb >11:link funct(x,y,p,nfunct) (0)

NPOINT number of points used during READ, PRINT, DPOINT, DCURVE, SCALE (512)

NSTEP number of subdivisions of p range — used during FCURVE (100)

PATSIZ spacing of LINE pattern in fraction of screen width (.04)

PEN plotter pen number (1)

POINT type of data symbol 0:dot, 1:circle, 2:square, 3:diamond, 4:triangle up, 5:triangle
down; POINT<0 for filled symbol (2)

POISIZ size of symbol in fraction of screen width (.004)

PMAX maximum value of p — used during FCURVE (p equals x for NFUNCT=0–11) (1)

PMIN minimum value of p — used during FCURVE (0)

ROW first row of data in FILE— used during READ (2)

TERM 1:visual 550, 2:selanar, 3:else (2)

TICSIZ size of axes ticks in fraction of screen (.015)



188 Appendix B: plot

TITLE title of graph—put on during BORDER (GRAPH)

XCOL column of x data in FILE— used during READ (1)

XECOL column of x-error data in FILE— used during READ, SCALE, DPOINT; XECOL=0
suppresses x-error bars (0)

XLABEL label on x axis— put on during BORDER (X)

XMAX largest x value in plot (1)

XMIN smallest x value in plot (0)

XOFF offset of the start of the x axis— unit: fraction of screen (.18)

XSCALE type of x scale— 1:linear, 2:logarithm, 3:inverse, 4:probability (1)

XSIZE size of x axis— unit: fraction of screen (XSIZE+ XOFF < 1.) (.8)

YCOL column of y data in FILE— used during READ (2)

YECOL column of y-error data in FILE— used during READ, SCALE, DPOINT; YECOL=0
suppresses y-error bars (3)

YLABEL label on y axis— put on during BORDER (Y)

YMAX largest y value in plot (1)

YMIN smallest y value in the plot (−1)

YOFF offset of the start of the y axis— unit: fraction of screen (.1)

YSCALE type of scale— 1:linear, 2:logarithm, 3:inverse, 4:probability (1)

YSIZE size of y axis—unit: fraction of screen (YSIZE+ YOFF < .75) (.6)

If there were some machine, somewhere, that could spit out universes with
randomly chosen values for their fundamental constants, then for every universe
like ours it would produce 10229 duds.

Though I haven’t sat down and run the numbers on it, to me this seems com-
parable to the probability of making a Unix computer do something useful by
logging into a tty and typing in command lines when you have forgotten all of
the little options and keywords.

In the Beginning. . .Was the Command Line by Neal Stephenson (1999)
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This appendix provides a longer example using fit and plot to analyze and display data.
A good way to start is to watch the online video: AppendixC_live.ogg available at the
class web site and youtube http://youtu.be/_fWpFLcTm50

The example data set is a recapitulation of work done in your last PHYS 200 lab on a.c.
circuits and resonance: the current flowing in a LRC circuit is measured as a function of the
frequency f of the a.c. voltage source. You may recall1 that because of frequency dependent
reactances, a series LRC circuit has a current, I, that depends on frequency. You can follow
along with this example if you grab a copy of the data file. At the linux $ prompt type:

$ cp /usr/local/physics/help/LRC.dat .

and a copy of the datafile should appear in your current directory (which is called “.”).
Similarly you can get a copy of the actual commands used in the below example by:

$ cp /usr/local/physics/help/LRC.com .

Theoretically the current as a function of frequency should be given by:

I =
V

√

R2 +
(

1
2πfC − 2πfL

)2
(C.1)

Start the program fit by typing to the linux $ prompt:

1or see Electrical Measurements Review particularly Fig. 1.1 on page 22
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Figure C.1: This series LRC circuit was constructed. A Wavetek 23 function generator
provided a GPIB-controlled sine wave; a keithley 196 reported the resulting current via
GPIB. The program LRC.f controlled the data collection.
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$ fit

*

The program responds with its own prompt: * . We need to tell fit the name of the datafile
we want to analyze and then read in that data:

* set file=LRC.dat

* read

freq(Hz) I(A) dI(A) by default this line ignored!

READ Done.

The first line of the file (freq(Hz). . . ) is simply echoed back as a way of confirming that
you are reading the intended file. It should be noted the file LRC.dat was written in the
default form, with x values in the first column (XCOL=1) , y values in the second column
(YCOL=2), and y-error values in the third column (YECOL=3). Next we need to tell fit what
function should match the data.

* set f(x)=k1/sqrt(k2^2+(1/(2*pi*k3*x)-2*pi*k4*x)^2)

where V = k1, R = k2, C = k3, L = k4 and f = x. For nonlinear fits we must always give
starting parameter estimates. In this case that’s easy as I measured the component values
when I built the circuit:

* set k1=2.4 k2=47 k3=1e-8 k4=.0086

Next I command a fit: please adjust the parameters k1–k4 to achieve the smallest possible
reduced χ2:

* fit

Enter list of Ks to vary, e.g. K1-K3,K5 k1-k4

FIT finished with change in chi-square= 1.5258789E-04

6 iterations used

REDUCED chi-squared= 3.790897 chi-squared= 363.9261

K1= 2.262721 K2= 190.7750 K3= 0.9930065E-08

K4= 0.8230284E-02

Display covariance/curvature matrices? No, Screen, File [N,S,F]

The result is pretty much as expected: reduced χ2 is high, but in the usually acceptable
range, the parameters are close to my original guess, with the exception of k2 = R. On
reflection even R is OK as the inductor itself has resistance (77.8 Ω) and according to
Fig. 1.1 on page 22, the function generator also has an internal 50 Ω resistor. Thus:
47 + 77.8 + 50 = 167.8 Ω should have been expected. Currently fit is asking if I want to
look at the covariance matrix, but I’ll delay replying No, Screen, or File until I look at the
fitted curve.

I start another terminal to display, using the program plot, what the fitted curve looks
like: at the linux $ prompt I type:
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$ plot

A new blue terminal (labeled plot.exe) pops up with its own * prompt. Exactly as with
fit I must tell the program the name of the datafile and then read in the data:

* set file LRC.dat

* read

freq(Hz) I(A) dI(A) by default this line ignored!

READ Done.

The x-data (frequency) ranges from 10000 to 30000; y-data (current) ranges from .002 to
.012. I could set by hand those ranges (e.g., XMIN=10000), but its much easier to have the
program make what it thinks are reasonable choices using the command:

* scale

I could now draw a border and display the datapoints, but first I tell plot the proper axes
labels:

* set xlabel=’Frequency (Hz)’ ylabel="RMS Current (A)" title=Resonance

* border

* dpoint

Plot is to use exactly the same function as fit:

* set f(x)=k1/sqrt(k2^2+(1/(2*pi*k3*x)-2*pi*k4*x)^2)

and I can copy&paste2 from the fit screen the values fit found for those parameters:

* set K1= 2.262721 K2= 190.7750 K3= 0.9930065E-08

* set K4= 0.8230284E-02

Then I can have plot display that function curve and print a hardcopy:

* fcurve

* pcopy

2Warning repeated: Ctrl C kills not copies; highlight and middle-mouse for copy
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If I go back to the fit screen and type s in answer to the question about matrices:

Display covariance/curvature matrices? No, Screen, File [N,S,F] s

Results of a fit to the function

f(x)=K1/SQRT(K2^2+(1/(2*PI*K3*X)-2*PI*K4*X)^2)

at 15:15 on 13-MAY-2009

found a REDUCED chi-square of 3.790897 and a chi-squared of 363.9261

using the following parameter estimates

K1= 2.262721 K2= 190.7750 K3= 0.9930065E-08

K4= 0.8230284E-02

and 100 data points at row 2 in the file:

LRC.dat

Below are displayed the covariance matrix = inverse curvature matrix and the

curvature matrix = .5 * Hessian = .5 * matrix of 2nd partials of chi-square

see Numerical Recipes 15.5-15.6 for a discussion of these matrices

Matrix form: K1 K2 K3 K4

K1

K2

K3

K4

COVARIANCE MATRIX:

-.55E+01 -.46E+03 0.24E-07 -.20E-01

-.46E+03 -.39E+05 0.20E-05 -.17E+01

0.24E-07 0.20E-05 -.11E-15 0.87E-10

-.20E-01 -.17E+01 0.87E-10 -.72E-04

CURVATURE MATRIX:

0.37E+06 -.12E+04 0.34E+14 -.34E+08

-.12E+04 0.83E+01 -.54E+11 0.63E+05

0.34E+14 -.54E+11 0.53E+23 0.56E+17

-.34E+08 0.63E+05 0.56E+17 0.76E+11
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The error results are a total disaster! The usual rule is that the error in a parameter is given
by the square root of the diagonal element of the covariance matrix. Thus (supposedly):

δk1 =
√

−.55× 101 (C.2)

δk2 =
√

−.39× 105 (C.3)

δk3 =
√

−.11× 10−15 (C.4)

δk4 =
√

−.72× 10−4 (C.5)

Clearly this is some sort of nonsense as the errors cannot be imaginary. Further note that
in every case |δki| ∼ ki.

A hint about what’s going on is gained by making a different starting guess for the values
of the parameters:

* set k1=240 k2=.47 k3=1e-7 k4=.00086

Fit results show the same reduced χ2, but with radically different parameters:

REDUCED chi-squared= 3.790896 chi-squared= 363.9260

K1= 0.2419768 K2= 20.40159 K3= 0.9285606E-07

K4= 0.8801518E-03

There is a curve of (L,R,C, V ) values that produces exactly the same resonance curve.
Substituting

L → αL (C.6)

C → C/α (C.7)

R → αR (C.8)

V → αV (C.9)

(C.10)

into Eq. C.1 results in an unchanged function (the α cancels out).

We can rewrite our function with just three parameters:

I =
I0

√

1 +Q2
(

f0
f − f

f0

)2
(C.11)

where:

I0 = V/R (C.12)

Q =

√

L/C

R
(C.13)

f0 =
1

2π
√
LC

(C.14)

(C.15)
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This reparametrization of the function is both required and easier, in the sense that initial
guesses for the parameters can be immediately obtained from the raw data: I0 ∼ .012 A is
the current at resonance, f0 ∼ 17600 Hz is the resonant frequency, and the quality factor
Q is f0/∆f , where ∆f ∼ 19500 − 15800 = 3700 is the full width at I = I0/

√
2 ∼ .0085 A.

* set f(x)=k1/sqrt(1+k2^2*(k3/x-x/k3)^2)

* set k1=.012 k2=4.7 k3=17.6e3

* fit

Enter list of Ks to vary, e.g. K1-K3,K5 k1-k3

FIT finished with change in Ks implying 4 significant figures

2 iterations used

REDUCED chi-squared= 3.751816 chi-squared= 363.9261

K1= 0.1186070E-01 K2= 4.772110 K3= 17605.02

Display covariance/curvature matrices? No, Screen, File [N,S,F] s

Results of a fit to the function

f(x)=K1/SQRT(1+K2^2*(K3/X-X/K3)^2)

at 16:05 on 13-MAY-2009

found a REDUCED chi-square of 3.751816 and a chi-squared of 363.9261

using the following parameter estimates

K1= 0.1186070E-01 K2= 4.772110 K3= 17605.02

and 100 data points at row 2 in the file:

LRC.dat

Below are displayed the covariance matrix = inverse curvature matrix and the

curvature matrix = .5 * Hessian = .5 * matrix of 2nd partials of chi-square

see Numerical Recipes 15.5-15.6 for a discussion of these matrices

Matrix form: K1 K2 K3

K1

K2

K3

COVARIANCE MATRIX:

0.52E-09 0.25E-06 -.68E-06

0.25E-06 0.14E-03 -.77E-03

-.68E-06 -.77E-03 0.16E+02

CURVATURE MATRIX:

0.13E+11 -.24E+08 -.60E+03

-.24E+08 0.52E+05 0.15E+01

-.60E+03 0.15E+01 0.63E-01

We now have reasonable results for errors:

δk1 =
√

.52× 10−9 = 2.3 × 10−5 A (C.16)

δk2 =
√

.14× 10−3 = .012 (C.17)

δk3 =
√

.16× 102 = 4 Hz (C.18)
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Another way of estimating errors is to bootstrap:

* boots

The results:

MEANS

1.187386E-02 4.77916 17605.1

STANDARD DEVIATIONS

2.891049E-05 1.747892E-02 8.34518

are similar to those above. With the largish reduced χ2 one might want to enlarge y-error
values until reduced χ2 ≈ 1. . . fit calls that a fudge. Note that once the y-errors have
been modified the only way to return to the unmodified data is to re-read the file.

* fudge

* fit

Enter list of Ks to vary, e.g. K1-K3,K5 k1-k3

FIT finished with change in chi-square= 9.8335266E-02

1 iterations used

REDUCED chi-squared= 0.9858394 chi-squared= 95.62643

K1= 0.1186207E-01 K2= 4.772794 K3= 17605.02

Display covariance/curvature matrices? No, Screen, File [N,S,F] s

Results of a fit to the function

f(x)=K1/SQRT(1+K2^2*(K3/X-X/K3)^2)

at 16:15 on 13-MAY-2009

found a REDUCED chi-square of 0.9858394 and a chi-squared of 95.62643

using the following parameter estimates

K1= 0.1186207E-01 K2= 4.772794 K3= 17605.02

and 100 data points at row 2 in the file:

LRC.dat

Below are displayed the covariance matrix = inverse curvature matrix and the

curvature matrix = .5 * Hessian = .5 * matrix of 2nd partials of chi-square

see Numerical Recipes 15.5-15.6 for a discussion of these matrices

Matrix form: K1 K2 K3

K1

K2

K3

COVARIANCE MATRIX:

0.20E-08 0.94E-06 -.26E-05

0.94E-06 0.51E-03 -.29E-02

-.26E-05 -.29E-02 0.60E+02

Once the error bars have been expanded (fudge) this new fit gives a new covariance matrix



196 Appendix C: fit & plot Example

from which fudged errors can be determined:

δk1 =
√

.20× 10−8 = 4.5 × 10−5 A (C.19)

δk2 =
√

.51× 10−3 = .023 (C.20)

δk3 =
√

.60× 102 = 7.7 Hz (C.21)

What is the source of the uncomfortably large reduced χ2? If you look at the plot you’ll
notice that there are glitches at the two frequencies where I = .003 A — that is where the
ammeter has automatically switched scales. A scale switch can result in different systematic
error and it certainly results in a different voltage burden3. If we just fit to the data with
I > .003 A we can avoid those effects. This data lies between rows 18 and 88 in the file
LRC.dat; we can selectively have fit read this data:

* set row=18 npoint=70

* read

* print

Note that when you read all 17 rows of unwanted stuff in the file is echoed to your screen.
The command print displays the data that is inside the program, allowing eyeballs to
confirm that fit’s current data has I > .003 A. The fit result is:

REDUCED chi-squared= 0.6348079 chi-squared= 42.53213

K1= 0.1174845E-01 K2= 4.634116 K3= 17598.93

One can achieve almost the same thing by telling fit to limit its analysis to a subset
block of the data it holds. When the data was originally read in, it was stored in adjacent
cells labeled 1,2,3,. . . ,npoint. We can tell fit to analyze any subset block of that data
by changing which cell holds the “first” data point (ibegin) and the length of the run of
wanted data.

* set ibegin=17 npoint=70

In this case we should not re-read the data, as the intent is to use the data already held in
fit. (Earlier in this example we changed the y-errors when we commanded fudge, so here
we really do need to re-read the unmodified data and errors rather than just use a subset
of the modified data/errors.)

We can use plot to display this new fitted curve with the entire dataset. All we need to
do is change the function, set the newly found parameters k1-k3 via copy&paste from fit,
and then redraw the plot:

* clear

* set f(x)=k1/sqrt(1+k2^2*(k3/x-x/k3)^2)

* set K1=0.1174845E-01 K2=4.634116 K3=17598.93

* border

* dpoint

* fcurve

3see page 25
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Mathematica

The program Mathematica can also find these nonlinear fits; of course it uses a different set
of commands and data structures. You can follow along with this example if you grab a
copy of the (slightly modified4) data file. At the linux $ prompt type:

$ cp /usr/local/physics/help/LRCm.dat .

and a copy of the datafile should appear in your current directory (which is called “.”).

There are two version of Mathematica a command line version (math) and a browser version5

(mathematica). The commands are the same in the two versions; the main difference is
an absence of user friendly features—like arrow-key line editing, on-line help, drop-down
menus—in the kernel version (math). I every much prefer the no-frills math version, but it
is an acquired taste.

In a terminal, cd to the directory that contains the file LRCm.dat. Start Mathematica by
typing to the linux $ prompt:

$ mathematica

or, if you’re hard-core:

$ math

The file LRC.com that you previously copied also contains the Mathematica commands dis-
cussed below. Note that in mathematica to execute a command you need to simultaneously
hit Shift and Enter, whereas in math it’s just the usual Enter.

In Mathematica data is stored in set notation: xy={{x1, y1}, {x2, y2}, . . . , {xN , yN}} with
the errors stored in a different set (which must of course be in the same order):

4the first row of text has been removed
5i.e., with a Graphical User Interface—GUI, pronounced “gooey”—with menus and line editing
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ey={δy1, δy2, . . . , δyN} To read the data into Mathematica in this format we need to do
some rearrangement:

xyey=ReadList["LRCm.dat",{{Number,Number},Number}]

xy=Part[xyey,All,1]

ey=Part[xyey,All,2]

The following line must be typed in exactly (including case) as shown:

nlm = NonlinearModelFit[xy, k1/Sqrt[1+k2^2*(k3/x-x/k3)^2],{{k1,.012},{k2,4.7},

{k3,17600}},{x},Weights->1/ey^2,VarianceEstimatorFunction->(1 &)]

I hope the parts make some sense to you: notice particularly how the initial parameter
guesses have been entered (e.g., {k1,.012}). The result should look at bit like:

FittedModel[
.0118607√

1 + 22.7729 ≪ 1 ≫2
]

The symbol nlm now contains all the information about the fit; proper requests can extract
that information:

In[5]:= nlm["ParameterConfidenceIntervalTable"]

Out[5]= Estimate Standard Error Confidence Interval

0.0118153

k1 0.0118607 0.000022857 0.011906

4.74902

k2 4.77209 0.0116262 4.79517

17597.1

k3 17605. 3.98307 17612.9

In[6]:= nlm["CovarianceMatrix"]

-10 -7 -7 -7

Out[6]= {{5.2244 10 , 2.46067 10 , -7.06763 10 }, {2.46067 10 , 0.000135169,

-7

> -0.00078076}, {-7.06763 10 , -0.00078076, 15.8649}}

In[7]:= nlm["ANOVATable"]

Out[7]= DF SS MS

6

Model 3 1.88937 10 629790.

Error 97 363.926 3.75182

6

Uncorrected Total 100 1.88974 10

Corrected Total 99 377421.
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ParameterConfidenceIntervalTable gives us the fitted parameters with usual errors. As
with fit, these estimates are the square root of the diagonal elements of the CovarianceMatrix.
The quality of the fit is available in the ANOVATable: the Error row, the SS column is the
χ2 and the MS column is the reduced χ2.

Mathematica needs some help to do plots with error bars. Additionally the error bars and
the data need to be put together in exactly the right way:

Needs["ErrorBarPlots‘"]

bar=Map[ErrorBar,ey]

xyEB=Transpose[{xy,bar}]

ErrorListPlot[xyEB]

Show[ErrorListPlot[xyEB], Plot[nlm[x], {x, 10000, 30000}], Frame->True]



200 Appendix C: fit & plot Example



Appendix D: Linux Commands

201



function LINIX  name

help man, apropos, whatis, info

logout, bye exit, logout

directory listing ls, dir 

copy cp

rename mv think ‘‘move’’

delete rm think ‘‘remove’’

type to screen cat think ‘‘concatenate’’

more, less, tail, head, tac

change working directory cd

show working directory pwd think ‘‘print working directory’’

create directory mkdir

delete directory rmdir empty directories only, otherwise rm −R

show users who, w

show/monitor system function ps, uptime

show computer hostname

search for files find . −name filename 

search for system files locate

quota display disk usage and limits

summary of disk usage du . think ‘‘disk useage’’, also see: ls −Rs

set/change protection chmod ‘‘permissions’’

set protection defaults umask

edit vi, vim, nano, emacs, kwrite, gedit

suspend process ^Z, fg, &, bg

print to printer=name lp −dname file      see enscript for fancier PS printing

printer status, control lpstat −t, cancel

‘‘goto’’ new computer telnet, ssh

mail Mail, mail, mutt, thunderbirdbird, evolution

fortran compile g77  −o file file.f, fort file, forie file

link file ld (often automatic from compiler)

run file file (default executable filename is a.out)

mathematica math, mathematica

search inside of files grep, fgrep, egrep, grepall

file differences diff, cmp,  kompare

show time date

show process whoami, ps

kill process kill −9 PID, xkill

kill process (character) ^C, ^D

suspend process ^Z

set display setenv  DISPLAY mymachine:0

show ...stuff printenv, env, set   (NB unsetenv, unset)

hi == "dir" alias hi dir    (NB unalias)

write out echo

file transfer sftp, rsync (get and put files between computers)

initial setup .cshrc, .login

command language csh (C shell), sh (Bourne shell), tcsh, bash

execute command file source file, file

list recent commands history

web firefox, chrome

windoze citrix

word, excel libreoffice,ooffice, gnumeric

/

/usr

/usr/local

/usr/people

/usr/people/faculty

/usr/local/physics

/usr/local/bin

Directory tree:

/usr/people/faculty/physics

‘‘root’’ folder

each folder may contain many files

code meaning

~ your home directory

~dsteck Dan’s home directory

. the current directory

.. the directory up one level

− used to set options in commands (ls −alF)

< redirect input to a command, e.g., from a file
 > redirect output from a command, e.g., to a file

| ‘‘pipe’’ to connect commands

!key command history,  re−run most recent command that begins ‘‘key’’

CTRL C control C (aka ^C, C−c), kill process

CTRL Z (aka ^Z, C−z) ‘‘stop’’ process, i.e. suspend it

CTRL D (aka ^D, C−d, EOF) used to end things 

* % ls −alF *.tex * is a wildcard
% cp *.f new copy a bunch of files to new/
$ rename *.dat *.old can’t easily do, see chext

? single character match

[] single character in set match

$ shell variable substitution character

\"’ quotation metacharacters

TAB filename expansion

‘ command substitution

& for background execution

For more information see:

 Help in the toolchest menu (upper lefthand corner)

The UNIX C Shell Field Guide   (Anderson & Anderson; Prentice Hall)

/home

/home/f13/home/f12

/usr/local/physics/help
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Uncertainty Formulae

In the below equations the quantities a, b, c, . . . have uncertainties δa, δb, δc, . . . whereas
the quantities K, k1, k2, . . . are “constants” (like π or 2) with zero error or quantities
with so small error that they can be treated as error-free (like the mass of a proton:
mp = (1.67262158 ± .00000013) × 10−27 kg or Avogadro’s number NA = (6.02214199 ±
.0000047)×1023). This table reports the error in a calculated quantity R (which is assumed
to be positive). Note that a quantity like δa is called an absolute error; whereas the quantity
δa/a is called the relative error (or, when multiplied by 100, the percent error). The odd
Pythagorean-theorem-like addition (e.g., δR =

√
δa2 + δb2) is called “addition in quadra-

ture”. Thus the formula for the error in R = K ab/cd could be stated as “the percent error
in R is the sum of the percent errors in a, b, c and d added in quadrature”.

Equation Uncertainty

R = a+K δR = δa (E.1)

R = K a
δR

R
=
δa

a
or δR = |K| δa (E.2)

R =
K

a

δR

R
=
δa

a
or δR =

|K| δa
a2

(E.3)

R = K ak1
δR

R
=

|k1| δa
a

or δR = |k1Kak1−1| δa (E.4)

R = a± b δR =
√

δa2 + δb2 (E.5)

R = k1a+ k2b δR =

√

(k1δa)
2 + (k2δb)

2 (E.6)

R = K ab
δR

R
=

√

(

δa

a

)2

+

(

δb

b

)2

(E.7)

R = K
a

b

δR

R
=

√

(

δa

a

)2

+

(

δb

b

)2

(E.8)

R = f(a) δR = |f ′(a)| δa (E.9)

R = K
ab

cd

δR

R
=

√

(

δa

a

)2

+

(

δb

b

)2

+

(

δc

c

)2

+

(

δd

d

)2

(E.10)

R = K
ak1bk2

ck3dk4
δR

R
=

√

(

k1δa

a

)2

+

(

k2δb

b

)2

+

(

k3δc

c

)2

+

(

k4δd

d

)2

(E.11)

R = f(a, b, c, d) δR =

√

(

∂f

∂a
δa

)2

+

(

∂f

∂b
δb

)2

+

(

∂f

∂c
δc

)2

+

(

∂f

∂d
δd

)2

(E.12)
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