
Uniform Acceleration II

Recall: The expressions for constant proper accelerated motion (α = g/c = c/x0) in terms of
proper time τ (i.e., time measured with a clock that moves with the object, and hence subject to
time dilation).

x = x0

√

1 + (αt)2 = x0 cosh(ατ)

ct = x0 sinh(ατ)

β =
αt

√

1 + (αt)2
= tanh(ατ)

γ =
√

1 + (αt)2 = cosh(ατ)

The aim today is to produce a new set of coordinates (∆x, cτ) for space based on a frame attached
to a “rigidly” accelerating object. We begin by picking an origin for our new coordinates at x0.
Our time coordinate τ will be the proper time for this origin. We apply this time to every instant
in the various instantaneous rest frames. Our spatial coordinate ∆x is measured from our origin.

x0

∆x

τ = constant
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We can find the inertial coordinate frame location (x, ct) of the moving origin in terms of its
proper time:

x1 = x0 cosh(ατ) = x0 cosh(cτ/x0)

ct1 = x0 sinh(ατ) = x0 sinh(cτ/x0)

A general point is reached by “scaling out” along a t′ = 0 line:

x2 =
x0 + ∆x

x0
x1 = (x0 + ∆x) cosh(cτ/x0)

ct2 =
x0 + ∆x

x0
ct1 = (x0 + ∆x) sinh(cτ/x0)

Note that the form of these equations is identical with those for constant proper acceleration, but
with a different argument for the hyperbolic functions. So the world line of a particle ‘at rest’ in



these new coordinates (i.e., ∆x=constant) is itself undergoing constant proper acceleration when
viewed from the inertial frame. Such a particle will have a proper acceleration, dependent on
∆x, given by α2 = c/(x0 + ∆x) and it will reach this same event in a proper time τ2 such that
α2τ2 = cτ/x0. As a result clocks at rest in the accelerated coordinates (displaying proper time)
will not agree with the coordinate time1 τ :

τ2 =
x0 + ∆x

x0
τ = ητ

So clocks ‘above’ the origin (i.e., ∆x > 0), will run faster than coordinate time.

The inverse transformation equations are easily found:

∆x =
√

x2 − (ct)2 − x0

cτ = x0 tanh−1 (ct/x)

(The transverse coordinates y and z are invariant, so I will often not record their simple behavior.)

To transform vectors between systems we need the matrix of partial derivatives:

∂xinert

∂xaccel
=





∂x
∂∆x

∂x
∂cτ

∂ct
∂∆x

∂ct
∂cτ



 =

[

cosh(cτ/x0) (1 + ∆x/x0) sinh(cτ/x0)
sinh(cτ/x0) (1 + ∆x/x0) cosh(cτ/x0)

]

=

[

cosh η sinh
sinh η cosh

]

= λ

where η = 1 + ∆x/x0.

To find the metric tensor in the accelerated system gµ′ν′ , we must transform the metric tensor in

the inertial system: gµν =

[

1 0
0 −1

]

gµ′ν′ =
∂xµ

∂xµ′

∂xν

∂xν′
gµν = λTgµνλ

The result is:

gµ′ν′ =

[

1 0
0 −η2

]

The inverse of this matrix is:

gµ′ν′

=

[

1 0
0 −1/η2

]

Note that in any frame light must travel on a null geodesic. Thus

0 = ds2 = gµ′ν′dxµ′

dxν′

= (dr2 − η2c2dτ2)

We can conclude that speed of light in the accelerated coordinates is cη, which is larger than c for
∆x > 0 and approaches zero for ∆x → −x0. (There is no physical requirement for the coordinate
speed of light to be c or even have the units of m/s.)

1It is of course possible to design a clock to display coordinate time at a location ∆x, but, for example, a light

clock a distance ∆x above the origin will seem to run fast because of the faster speed ot light up there.



The inverse of the λ matrix is also needed to transform contravariant tensors. It is easy to find
the inverse of 2 × 2 matrices:

λ−1 =

[

cosh − sinh
(−1/η) sinh (1/η) cosh

]

=
∂xaccel

∂xinert

1. Directly calculate λ−1 by taking the derivatives of the accelerated coordinates w.r.t. the inertial
coordinates.

2. Note that in the accelerated system, the metric tensor g is independent of of τ and only
depends on position via η. That is only g44,1 6= 0. Calculate the non-zero Christoffel symbols.

In the inertial frame motion is very simple: objects move at constant velocity. Thus

x = xs + vx0t = xs + v sin θ t

y = vy0t = v cos θ t

(Since the system is homogeneous in the y direction, we don’t bother with a “y0” term. The
starting position for x, xs will generally be near the origin x0.) Note that since x is the “vertical”
we have an odd-looking coordinate system:

y

x

v

θ

In the below Mathematica code, we are using the length units of light-years and time units of years.
Thus, c = 1 and it turns out that for a proper acceleration of g = 9.8m/s2, α ≈ 1. A time interval
of 30 seconds would be about 10−6 years. Since light travels at about 1 foot per nanosecond and
three nanoseconds is about 10−16 year, a kilometer would be about 10−13 light-year. The speed of
sound is about 10−6c. Thus a realistic ballistic problem (a few-mach projectile with an aim-point
a few kilometers away, and travel times near a minute) will produce “small” initial conditions.
We should start to see relativistic effects as we move towards “unit-sized” times, velocities, and
distances. The below Mathematica code sets up a ballistic problem.

x0=1

dx[x_,ct_]=Sqrt[x^2-ct^2]-x0 ...define transformation

ctau[x_,ct_]=x0 ArcTanh[ct/x]

x[dx_,ctau_]=(x0+dx) Cosh[ctau/x0]

ct[dx_,ctau_]=(x0+dx) Sinh[ctau/x0]

xs1=x0 ...fire cannon



v1=3 10^-6

theta1=Pi/4

ParametricPlot[{v1 Cos[theta1] t,dx[xs1+v1 Sin[theta1] t,t]},{t,0,5 10^-6},

AspectRatio->Automatic]

ParametricPlot[{ctau[xs1+v1 Sin[theta1] t,t],dx[xs1+v1 Sin[theta1] t,t]},{t,0,5 10^-6}]

The first ParametricPlot command displays the trajectory: the trace of (y, x) locations visited
by the projectile. Note that the x (actually ∆x) location of the projectile is calculated just
by transforming a uniformly-moving inertial location. The second ParametricPlot command
displays the x(t) in the accelerated system (i.e., actually ∆x(cτ)). Again the calculation is made
simply by transforming uniform inertial motion to complex τ and ∆x behavior.

It is interesting to compare this transformed-motion to the usual non-relativistic results:

x = xs + vx0t −
1

2
gt2 = xs + βx0 ct −

1

2

1

x0
(ct)2

y = vy0t = βy0 ct

The (initial) velocity in the accelerated system can be calculated:

d∆x

dcτ
=

d∆x(x(t),t)
dt

dcτ(x(t),t)
dt

dy

dcτ
=

dy
dt

dcτ(x(t),t)
dt

vdx[xs_,v_,theta_,t_]=D[dx[xs+v Sin[theta] t,t],t]/D[ctau[xs+v Sin[theta] t,t],t]

vdy[xs_,v_,theta_,t_]=v Cos[theta]/D[ctau[xs+v Sin[theta] t,t],t]

3. Establish your own initial conditions for uniform motion in the inertial frame and ParametricPlot

the results as seen in the accelerated system. Find the equivalent initial velocity in the acceler-
ated frame and see if the Intro Physics equations closely follow the exact result. Show both plots
together. PSPrint the results. Establish relativistic initial conditions (muzzle velocities near c,
ranges near a light year) and ParametricPlot the results.

Note that every uniformly moving object in the observable universe ( i.e., x > 0) must eventually
past through the line “cone”.



x0

τ = ∞   ∆
x =

 −
x 0

∆x>0∆x<0

The light cone is an usual place as seen in the accelerated coordinate system; I’ll call it the
horizon. Note that on the light cone ct/x = 1, and since tanh−1 (1) = ∞, τ = ∞. Thus while a
clock aboard a particle crossing the light cone increments normally (in proportion to t), as seen
in the accelerated frame it takes and infinite time to cross the horizon. The horizon is all at a
distance ∆x = −x0. Thus a particle approaching the horizon, travels a finite distance, but takes
an infinite τ to do so. Hence the coordinate velocity must approach zero. Make sure you follow
your relativistic projectile to times when it approaches the horizon.

4. The path of light is bent in the accelerated system. Produce a ParametricPlot showing
this. Note that if the x component of the velocity of light is less than c, light is also sucked into
the horizon. But if light is sucked to the horizon, it must do so (like any other object) with a
vanishingly small speed. As stated above the coordinate velocity of light (i.e., d∆x/dτ) depends
on position and is zero at the horizon. Since we know the speed of light measured with local
clocks and meter sticks must be c, this reinforces what was stated earlier: coordinate τ is not
what local clocks read as time except at ∆x = 0; rather τ is “the king’s” time enforced through
out the realm.

We know that “F = ma” is not the correct equation of motion in general coordinate systems.
Rather particles follow geodesics:

dβσ

ds
= −Γσ

µνβ
µβν

where ds is the proper time:

ds2 = −gµνdxµdxν = η2c2dτ2 − dx2 = c2dτ2

[

η2 −

(

dx

dcτ

)2
]

= c2dτ2
(

η2 − (u/c)2
)

=

(

cdτ

γ∗

)2

and βµ is the velocity 4-vector:

βµ =
dxµ

ds
= γ∗

dxµ

cdτ
= γ∗(u/c, 1)

Note that as usual:
βµβµ = βµβνgµν = γ∗2(u2/c2 − η2) = −1

We need this geodesic equation written in terms of coordinate time derivatives not proper time.
(We do this in general, calling the time coordinate t, denoting ct derivatives with a dot, and



dropping the ∗ on γ.) The four equations of the geodesic equation are:

γ(γ̇ui/c + γu̇i/c) = −Γi
µνβ

µβν

γγ̇ = −Γ4
µνβ

µβν

γ2u̇i/c = ui/c Γ4
µνβµβν − Γi

µνβµβν

ai = ui/c Γ4
µνuµuν − Γi

µνu
µuν

5. You calculated the required Christoffel symbols in 2 (also see Eqs. 8.47). Substitute your
Christoffel symbols results into the geodesic equation and compare to Eqs. 8.48. Note: we found
the motion in the accelerated frame by transforming coordinates for the simple inertial motion.
We could have started with this geodesic equation and found the motion directly by solving the
differential equation. Clearly in the usual case particle motion is not known in any frame, and
solving the geodesic equation is the only available approach.


