Uniform Acceleration

We seek the solution to the problem of constant proper acceleration, a_{0}, where $\mathbb{A}^{2}=a_{0}^{2}$. It will be convenient to define the parameter $\alpha=a_{0} / c$, which has the units of inverse time. In the case of motion along the x-axis, the 4 -vectors reduce to two component vectors:

$$
\begin{aligned}
\mathbb{X} & =(x, i c t) \\
\mathbb{U} & =\gamma(u, i c) \\
\mathbb{A} & =\gamma[\gamma(a, 0)+\dot{\gamma}(u, i c)]
\end{aligned}
$$

where:

$$
\dot{\gamma}=\frac{d \gamma}{d t}=\gamma^{3} \frac{u a}{c^{2}}
$$

So

$$
\begin{aligned}
\mathbb{A}^{2} & =\gamma^{2}\left[(\gamma a+\dot{\gamma} u)^{2}-(\dot{\gamma} c)^{2}\right] \\
& =\gamma^{2}\left[\left(\gamma a+\gamma^{3} \beta^{2} a\right)^{2}-\left(\gamma^{3} \beta a\right)^{2}\right] \\
& =\gamma^{8}\left[a^{2}\left(\frac{1}{\gamma^{2}}+\beta^{2}\right)^{2}-a^{2} \beta^{2}\right] \\
& =\gamma^{6} a^{2} \\
& =a_{0}^{2}
\end{aligned}
$$

So:

$$
a_{0}=\gamma^{3} a=\frac{d}{d t}(\gamma u)
$$

or

$$
\alpha=\frac{d}{d t}(\gamma \beta) \quad \Rightarrow \quad \alpha t=\gamma \beta
$$

where we've used:

$$
\frac{d}{d t} \gamma u=\gamma^{3} \beta^{2} a+\gamma a=\gamma^{3} a\left(\beta^{2}+1 / \gamma^{2}\right)=\gamma^{3} a
$$

A bit of algebra gives us separate expressions for β and γ as functions of time:

$$
\begin{aligned}
\gamma \beta & =\alpha t \quad \text { we take } \beta=0 \text { at } t=0 \\
(\gamma \beta)^{2}=\frac{\beta^{2}}{1-\beta^{2}} & =(\alpha t)^{2} \\
\beta^{2}\left(1+(\alpha t)^{2}\right) & =(\alpha t)^{2} \\
\beta & =\frac{\alpha t}{\sqrt{1+(\alpha t)^{2}}} \\
\gamma & =\sqrt{1+(\alpha t)^{2}}
\end{aligned}
$$

We can integrate $\beta(t)$ to find $x(t)$:

$$
\frac{x-x_{0}}{c}=\int \frac{d x}{c}=\int \frac{\alpha t d t}{\sqrt{1+(\alpha t)^{2}}}=\frac{1}{\alpha}\left(\sqrt{1+(\alpha t)^{2}}-1\right)
$$

If we choose $x_{0}=c / \alpha$, the result is particularly simple:

$$
\begin{aligned}
x & =\frac{c}{\alpha} \sqrt{1+(\alpha t)^{2}} \\
x^{2} & =\left(\frac{c}{\alpha}\right)^{2}+(c t)^{2} \\
x^{2}-(c t)^{2} & =x_{0}^{2}=(c / \alpha)^{2}
\end{aligned}
$$

(While this choice of x_{0} makes for nice equations, it typically results in an origin rather far from the object. For example, if $a_{0}=g, x_{0}$ is nearly a light year.)

Since the lhs is an invariant form, we immediately know the form of this equation in boosted frames S^{\prime}. Additionally note that $\dot{x}=c^{2} t / x$ for any α. Thus regardless of α, such hyperbolic objects crossing the line $t / x=$ constant share a common speed. If we boost to that frame, we find the line $t / x=$ constant is the line $t^{\prime}=0$. Because of the invariant form, objects on this line must also have $x^{\prime}=x_{0}$ and $u^{\prime}=0$. Thus if we look at a collection of hyperbolic objects (each with differing x_{0} and hence differing α), in any standard boosted frame S^{\prime}, at $t^{\prime}=0$ we will find the objects at rest with exactly the same x^{\prime} as they had in the initial frame. This provides the best possible example of a 'rigid', accelerating body.

The dotted lines denote hyperbolic motion of the form:

$$
x^{2}-(c t)^{2}=x_{0}^{2}
$$

where $x_{0}=1,2,3$ is the position at $t=0$. Also shown is the line $t^{\prime}=0$ for some frame S^{\prime} and the lines $x^{\prime}=0,1,2,3$. Note the tangency of the hyperbolas and the $x^{\prime}=1,2,3$ lines. At $t^{\prime}=0$ the hyperbolic objects are at rest in S^{\prime}.

There are nice expressions for this motion in terms of proper time (i.e., time measured with a clock that moves with the object, and hence subject to time dilation).

$$
\begin{aligned}
d \tau & =\frac{d t}{\gamma}=\frac{d t}{\sqrt{1+(\alpha t)^{2}}} \\
\tau & =\int \frac{d t}{\sqrt{1+(\alpha t)^{2}}}=\frac{1}{\alpha} \sinh ^{-1}(\alpha t) \\
\sinh (\alpha \tau) & =\alpha t \\
x & =x_{0} \sqrt{1+(\alpha t)^{2}}=x_{0} \cosh (\alpha \tau) \\
c t & =x_{0} \sinh (\alpha \tau) \\
\beta & =\frac{\alpha t}{\sqrt{1+(\alpha t)^{2}}}=\tanh (\alpha \tau) \\
\gamma & =\sqrt{1+(\alpha t)^{2}}=\cosh (\alpha \tau) \\
\mathbb{U} & =\gamma(u, i c)=c(\sinh (\alpha \tau), i \cosh (\alpha \tau)) \\
\mathbb{A} & =\frac{d \mathbb{U}}{d \tau}=c \alpha(\cosh (\alpha \tau), i \sinh (\alpha \tau)) \\
\mathbb{A}^{2} & =(c \alpha)^{2}\left(\cosh ^{2}(\alpha \tau)-\sinh ^{2}(\alpha \tau)\right)=a_{0}^{2}
\end{aligned}
$$

