While a powerful theoretical tool, the stress tensor generally makes poor homework problems: only in simple, symmetric situations can it be easily applied, and in those cases direct calculation of the force is much easier. Consider the case of a pair of identical line charges (charge per length λ), parallel to the z axis, one piercing the $x y$ plane at $(a, 0)$ and the other at $(-a, 0)$. It's easy to directly calculate the force on a length ℓ of the lhs line charge: The rhs line charge produces a cylindrically radially outward electric field:

$$
E=\frac{\lambda}{2 \pi \epsilon_{0} r}
$$

So at the location of the lhs line charge, the electric field is:

$$
\mathbf{E}=-\hat{\mathbf{i}} \frac{\lambda}{2 \pi \epsilon_{0} 2 a}
$$

A length ℓ of the lhs line charge has charge $\lambda \ell$, so the total force is:

$$
\mathbf{F}=-\hat{\mathbf{i}} \frac{\lambda^{2} \ell}{2 \pi \epsilon_{0} 2 a}
$$

Now the hard way: Imagine surrounding a length ℓ of the lhs line charge with the section of the $y z$ plane from $z=0$ to $z=\ell$. Infinitely far (so the electric field is effectively zero) we 'close' the surface with a half cylinder (that, for example, goes through $x=-\infty$). If we integrate the stress tensor over this surface, we should get the net electric force on all the enclosed charge (which is just the ℓ section of the lhs line charge). The total electric field on the $y z$ plane is the superposition of the electric fields of both line charges. As shown in the diagram, the result is just in the y direction:

$$
\mathbf{E}=\hat{\mathbf{j}} \frac{2 y}{r} \frac{\lambda}{2 \pi \epsilon_{0} r}
$$

where $r^{2}=y^{2}+a^{2}$.
Since $E_{x}=E_{z}=0$, the stress tensor is diagonal:

$$
\mathcal{T}=\epsilon_{0}\left[\begin{array}{ccc}
-\frac{1}{2} E_{y}^{2} & 0 & 0 \\
0 & \frac{1}{2} E_{y}^{2} & 0 \\
0 & 0 & -\frac{1}{2} E_{y}^{2}
\end{array}\right]
$$

So for a segment of the $y z$ plane:

$$
d \mathbf{F}=\mathcal{T} \cdot \hat{\mathbf{n}} d a=-\hat{\mathbf{i}} \frac{1}{2} \epsilon_{0} E_{y}^{2} \ell d y=-\hat{\mathbf{i}} \frac{1}{2} \epsilon_{0}\left[\frac{2 y}{r} \frac{\lambda}{2 \pi \epsilon_{0} r}\right]^{2} \ell d y
$$

and the total force is:

$$
\mathbf{F}=-\hat{\mathbf{i}} \frac{\lambda^{2} \ell}{2 \pi^{2} \epsilon_{0}} \int_{-\infty}^{+\infty} \frac{y^{2}}{\left(y^{2}+a^{2}\right)^{2}} d y
$$

which when evaluated, agrees with the above.
If we reverse the sign of the charge on the rhs line charge (i.e., charge per length $-\lambda$) the force between the two is equal to the above but opposite (attractive). Lets see how that works with the stress tensor.

The total electric field on the $y z$ plane is the superposition of the electric fields of both line charges: rhs \mathbf{E} points towards its line charge, lhs \mathbf{E} points away from its line charge. As shown in the diagram, the result is just in the x direction:

$$
\mathbf{E}=\hat{\mathbf{i}} \frac{2 a}{r} \frac{\lambda}{2 \pi \epsilon_{0} r}
$$

where $r^{2}=y^{2}+a^{2}$.
Since $E_{y}=E_{z}=0$, the stress tensor is diagonal:

$$
\mathcal{T}=\epsilon_{0}\left[\begin{array}{ccc}
\frac{1}{2} E_{x}^{2} & 0 & 0 \\
0 & -\frac{1}{2} E_{x}^{2} & 0 \\
0 & 0 & -\frac{1}{2} E_{x}^{2}
\end{array}\right]
$$

So for a segment of the $y z$ plane:

$$
d \mathbf{F}=\mathcal{T} \cdot \hat{\mathbf{n}} d a=\hat{\mathbf{i}} \frac{1}{2} \epsilon_{0} E_{x}^{2} \ell d y=\hat{\mathbf{i}} \frac{1}{2} \epsilon_{0}\left[\frac{2 a}{r} \frac{\lambda}{2 \pi \epsilon_{0} r}\right]^{2} \ell d y
$$

and the total force is:

$$
\mathbf{F}=\hat{\mathbf{i}} \frac{\lambda^{2} \ell}{2 \pi^{2} \epsilon_{0}} \int_{-\infty}^{+\infty} \frac{a^{2}}{\left(y^{2}+a^{2}\right)^{2}} d y
$$

which when evaluated, agrees with the expected result.
Homework: Consider a pair of infinite wires, parallel to the z axis, carrying current I, in opposite directions. One wire pierces the $x y$ plane at $(a, 0)$ and the other at $(-a, 0)$. Using the stress tensor, find the net magnetic force on a length ℓ of the lhs wire.

