A start: entering the metric (textbook equation 13.6): d[r_]=r^2 + a^2 -2 M r rho2[r_,t_]=r^2+a^2 Cos[t]^2 gij=DiagonalMatrix[{rho2[r,t]/d[r], rho2[r,t], Sin[t]^2(r^2+a^2+ 2 M r a^2/rho2[r,t] Sin[t]^2),-(1-2 M r/rho2[r,t])}] gij[[3,4]]= -2 M r a/rho2[r,t] Sin[t]^2 gij[[4,3]]=gij[[3,4]] In words describe why the (d phi d tau) term in the textbook has a 4, whereas this gij has a 2 The metric tensor's meaning is to define distances: ds^2=gab dxA dxB In the double sum we will have both (a,b)=(3,4) and (a,b)=(4,3) thus we will get two such terms: g[[3,4]] dphi dct + g[[4,3]]dct dphi=2 g[[3,4]] dphi dct, since g[[3,4]]=g[[4,3]] and thus the 2 in g[[3,4]] becomes a 4 in textbook equation 13.6 for ds^2 gijk=ConstantArray[0,{4,4,4}]; Do[ Do[ Do[ gijk[[i,j,k]]=Switch[k,1,D[gij[[i,j]],r],2,D[gij[[i,j]],t],3,0,4,0],{k,4}],{j,4}],{i,4}] gIJ=Simplify[Inverse[gij]] Glik=ConstantArray[0,{4,4,4}]; Do[ Do[ Do[ sum=Sum[gIJ[[l,j]] (gijk[[i,j,k]]+gijk[[j,k,i]]-gijk[[k,i,j]]),{j,4}]; Glik[[l,i,k]]=FullSimplify[sum/2],{k,4}],{l,4}],{i,4}] Glijk=ConstantArray[0,{4,4,4,4}]; Do[ Do[ Do[ Do [ Glijk[[l,i,j,k]]=Switch[k,1,D[Glik[[l,i,j]],r],2,D[Glik[[l,i,j]],t],3,0,4,0],{k,4}],{l,4}],{j,4}],{i,4}] RDabc=ConstantArray[0,{4,4,4,4}]; Do[ Do[ Do[ Do [ sum1=Sum[Glik[[j,a1,b1]] Glik[[d1,c1,j]]-Glik[[j,a1,c1]] Glik[[d1,b1,j]],{j,4}]; RDabc[[d1,a1,b1,c1]]=-Simplify[sum1+Glijk[[d1,a1,b1,c1]]-Glijk[[d1,a1,c1,b1]] ],{a1,4}],{b1,4}],{c1,4}],{d1,4}] Rab=ConstantArray[0,{4,4}]; Do[ Do[ Rab[[a1,b1]]=FullSimplify[Sum[RDabc[[d1,a1,b1,d1]],{d1,4}]],{a1,4}],{b1,4}] Rab Out[18]= {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}