Consider the usual spherical coordinates: (x,y,z)=(r \sin\theta \cos\phi, r \sin\theta \sin\phi, r \cos\theta ) find the superscript basis vectors: e^r, e^\theta, e^\phi find the subscripted basis vectors: e_r, e_\theta, e_\phi calculate the metric tensor gij superscripted eU= grad(u) subscripted eu= partial_u = er=< Sin[theta] Cos[phi], Sin[theta] Sin[phi], Cos[theta]> = usual hat{r} etheta= = r usual hat{theta} ephi=< - Sin[theta] Sin[phi], Sin[theta] Cos[phi], 0> = r Sin[theta] usual hat{phi} (r, theta, phi)= eR = grad(r)=/r = usual hat{r} eTHETA= = grad(ArcTan[Sqrt[x^2+y^2]/z]) In[1]:= {D[ArcTan[Sqrt[x^2+y^2]/z],x],D[ArcTan[Sqrt[x^2+y^2]/z],y],D[ArcTan[Sqrt[x^2+y^2]/z],z]} 2 2 x y Sqrt[x + y ] Out[1]= {-----------------------------, -----------------------------, -(----------------)} 2 2 2 2 2 2 2 2 x + y 2 2 x + y x + y 2 Sqrt[x + y ] (1 + -------) z Sqrt[x + y ] (1 + -------) z (1 + -------) z 2 2 2 In[2]:= % /.{x->r Sin[theta] Cos[phi], y->r Sin[theta] Sin[phi], z->r Cos[theta]} In[3]:= FullSimplify[%,{r>0, Sin[theta]>0}] Cos[phi] Cos[theta] Cos[theta] Sin[phi] Sin[theta] Out[3]= {-------------------, -------------------, -(----------)} r r r this is (1/r)* usual hat{theta} ePHI= = grad(ArcTan[y/x]) In[7]:= { D[ArcTan[y/x],x],D[ArcTan[y/x],y],D[ArcTan[y/x],z]} y 1 Out[7]= {-(-----------), ----------, 0} 2 2 2 y y x (1 + --) x (1 + --) 2 2 x x In[8]:= % /.{x->r Sin[theta] Cos[phi], y->r Sin[theta] Sin[phi]} Csc[theta] Sec[phi] Tan[phi] Csc[theta] Sec[phi] Out[8]= {-(----------------------------), -------------------, 0} 2 2 r (1 + Tan[phi] ) r (1 + Tan[phi] ) In[9]:= FullSimplify[%] Csc[theta] Sin[phi] Cos[phi] Csc[theta] Out[9]= {-(-------------------), -------------------, 0} r r this is 1/( r sin(theta) ) * usual hat{phi} Note for example that ePHI.ephi=1 & ePHI.er=0 all as required gij is the dot product of the lowered e. The lowered e are mutually orthogonal so the result is diagonal. Note that each is proportial to the corresponding unit vectors hat{}, so the dot product of the hats is one and we are left with the proportionality constant er = usual hat{r} etheta= r usual hat{theta} ephi= r Sin[theta] usual hat{phi} so gij = diagonal{ 1, r^2, r^2 Sin[theta]} which produces the usual result for differential distances: dr^2 + r^2((d theta)^2 + sin(theta)^2 (d phi)^2)