Lorentz Transformation of a Tensor

Consider the antisymmetric matrix (tensor) F with components $F_{\mu \nu}$ given by:

$$
\begin{gathered}
F_{\mu \nu}=\left[\begin{array}{cccc}
0 & b_{z} & -b_{y} & -i e_{x} \\
-b_{z} & 0 & b_{x} & -i e_{y} \\
b_{y} & -b_{x} & 0 & -i e_{z} \\
i e_{x} & i e_{y} & i e_{z} & 0
\end{array}\right] \\
\operatorname{In}[1]:=\text { fuv }=\{\{0, \mathrm{~b} 3,-\mathrm{b} 2,-\mathrm{I} \text { e1 }\},\{-\mathrm{b} 3,0, \mathrm{~b} 1,-\mathrm{I} \text { e } 2\},\{\mathrm{b} 2,-\mathrm{b} 1,0,-\mathrm{I} \text { e3 }\},\{\mathrm{I} \text { e1, } \mathrm{I} \text { e2, } \mathrm{I} \text { e } 3,0\}\}
\end{gathered}
$$

Recall that in a "rotated" coordinate system, tensors transform via a similarity transform:

$$
M^{\prime}=O \cdot M \cdot O^{-1}=O \cdot M \cdot O^{\mathrm{T}}
$$

Thus you read off \mathbf{b}^{\prime} and \mathbf{e}^{\prime} (b and e 3-vectors in the S^{\prime} frame) using Mathematica:
$\operatorname{In}[2]:=$ <<LorentzBoost.m ... Learn the function boost [vx, vy, vz]

In [3]:= fpuv=boost [v, 0, 0].fuv.Transpose[boost [v, 0,0]] ...fpuv is the matrix for $F_{\mu \nu}$ in the S^{\prime} frame. Note that fpuv [$[1,2]]$ is b_{z}^{\prime}.

1. From the Mathematica output, write down each component of \mathbf{b}^{\prime} and \mathbf{e}^{\prime}. Write down Eqs (22-40) from the textbook. Show that these two agree. (E.g., what is $\mathbf{u} \times \mathbf{B}$? What is \mathbf{E}_{\perp} ? cs will need to be inserted as they are absent from fuv.)

Recall that we make invariant quantities by "using up" all the subscripted indexes (dot product), i.e.:

$$
\mathbb{\beta} \cdot \mathbb{\beta}=\sum_{\mu=1}^{4} \beta_{\mu} \beta_{\mu}
$$

Thus we can find an invariant from a matrix by "using up" the two subscripted indexes- taking the trace:

$$
\operatorname{trace}(M) \equiv \sum_{\mu=1}^{4} M_{\mu \mu}
$$

The trace of $F_{\mu \nu}$ (Tr (fuv) in Mathematica) is invariant but dull: 0 .
2. What is the trace of $F \cdot F$? What is the trace of $F^{\prime} \cdot F^{\prime}$? Is the trace invariant?

The proof that trace produces invariants uses the following multiplicative property of trace:

$$
\operatorname{trace}(A \cdot B)=\operatorname{trace}(B \cdot A)
$$

Thus:

$$
\operatorname{trace}\left(M^{\prime}\right)=\operatorname{trace}\left(O \cdot M \cdot O^{\mathrm{T}}\right)=\operatorname{trace}\left(O^{\mathrm{T}} \cdot O \cdot M\right)=\operatorname{trace}\left(O^{-1} \cdot O \cdot M\right)=\operatorname{trace}(M)
$$

There is a similar multiplicative property for the determinant:

$$
\operatorname{det}(A \cdot B)=\operatorname{det}(B \cdot A)
$$

3. Simplify the Det of F and $F \cdot F$. Simplify the Det of F^{\prime} and $F^{\prime} \cdot F^{\prime}$. What is the fundamental invariant?
