5. Consider the (2d) parabolic coordinate system (u,v):

$$
\begin{aligned}
x & =\left(u^{2}-v^{2}\right) / 2 \\
y & =u v \\
u & =\frac{y}{\sqrt{r-x}} \\
v & =\sqrt{r-x}
\end{aligned}
$$

where $r=\sqrt{x^{2}+y^{2}}$. Find the vectors: \mathbf{e}_{u} and \mathbf{e}_{v}. By taking derivatives of these vectors find the Christoffel symbols: $\Gamma_{u u}^{u}, \Gamma_{u v}^{u}, \Gamma_{v v}^{u}, \Gamma_{u u}^{v}, \Gamma_{u v}^{v}, \Gamma_{v v}^{v}$. Use dot products of \mathbf{e}_{u} and \mathbf{e}_{v} to find the metric tensor. Take derivatives of the metric tensor to confirm one of the Christoffel symbols determined above.
6. The tensor $T^{\mu \nu}$ in the usual $x^{\mu}=(x, y, z, c t)$ (flat) coordinate system has the following values:

$$
T^{\mu \nu}=\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right)
$$

Find T_{ν}^{μ} and use it to produce an invariant. Consider a change of coordinates from rectangular to spherical $x^{\mu^{\prime}}=(r, \theta, \phi, c t)$ where as usual:

$$
\begin{array}{llrl}
x & =r \sin \theta \cos \phi & r & =\sqrt{x^{2}+y^{2}+z^{2}} \\
y & =r \sin \theta \sin \phi & \theta & =\cos ^{-1}(z / r) \\
z & =r \cos \theta & \phi & =\tan ^{-1}(y / x)
\end{array}
$$

Find $T^{\mu^{\prime} \nu^{\prime}}$, i.e., $T^{\mu \nu}$ in the spherical coordinate system.

