5. Consider the (2d) parabolic coordinate system (u, v):

where $r = \sqrt{x^2 + y^2}$. Find the vectors: \mathbf{e}_u and \mathbf{e}_v . By taking derivatives of these vectors find the Christoffel symbols: $\Gamma_{uu}^u, \Gamma_{uv}^u, \Gamma_{uv}^v, \Gamma_{uv}^v, \Gamma_{vv}^v$. Use dot products of \mathbf{e}_u and \mathbf{e}_v to find the metric tensor. Take derivatives of the metric tensor to confirm one of the Christoffel symbols determined above.

6. The tensor $T^{\mu\nu}$ in the usual $x^{\mu} = (x, y, z, ct)$ (flat) coordinate system has the following values:

$$T^{\mu\nu} = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix}$$

Find T^{μ}_{ν} and use it to produce an invariant. Consider a change of coordinates from rectangular to spherical $x^{\mu'} = (r, \theta, \phi, ct)$ where as usual:

x	=	$r\sin\theta\cos\phi$	r	=	$\sqrt{x^2 + y^2 + z^2}$
y	=	$r\sin\theta\sin\phi$	θ	=	$\cos^{-1}(z/r)$
z	=	$r\cos heta$	ϕ	=	$\tan^{-1}(y/x)$

Find $T^{\mu'\nu'}$, i.e., $T^{\mu\nu}$ in the spherical coordinate system.