5. The diagram below shows "synchronized" clocks in frames S and S^{\prime} as viewed from the CM frame ($S^{\prime \prime}$). Report how long it takes clock A^{\prime} to click off two seconds as seen in S. SO what is the γ factor? What is the corresponding β ? Report how long it takes clock E to click off two seconds as seen in S^{\prime}. As seen in S^{\prime}, how far apart are A and E at the time $t^{\prime}=3$? SO what is the γ factor?
Call the distance between adjacent clocks as seen in the CM frame $\Delta x^{\prime \prime}$. Note that the clock A^{\prime} travels a distance of $\Delta x^{\prime \prime}$ in a time $\Delta t^{\prime}=2$. Use this information to write down an equation for the velocity of the S^{\prime} frame relative to the $S^{\prime \prime}$ frame (γ for the boost between S^{\prime} and $S^{\prime \prime}$ should enter into this equation; note that these γ and β connect different frames from those found above.). Note the lack of synchronization between clocks A^{\prime} and B^{\prime} as seen in the CM frame: $\Delta t^{\prime}=1$ for $\Delta x^{\prime \prime}$ separation. Write down the equation describing this lack of synchronization. Solve these two equations to show that the β and γ that connect the $S^{\prime \prime}$ and S^{\prime} frames must satisfy: $\beta^{2} \gamma^{2}=\frac{1}{2}$. Find β. What is the time interval ($\Delta t^{\prime \prime}$) between the a) view and the b) view?
To go from S^{\prime} to S, you need to boost by this β twice: once to reach $S^{\prime \prime}$ and then again to reach S. Using the velocity addition formula, show that this process produces the β you found initially that connects S^{\prime} and S.

