Complete the last problem and 4 additional problems.

The S^{\prime} frame moves with a velocity βc down the positive x axis of the S frame. The relationship between coordinates in the two frames is given by:

$$
\begin{aligned}
\text { Boost: } & \binom{x^{\prime}}{c t^{\prime}}=\left(\begin{array}{cc}
\gamma & -\gamma \beta \\
-\gamma \beta & \gamma
\end{array}\right)\binom{x}{c t} \quad \text { and } \begin{array}{c}
y^{\prime}=y \\
z^{\prime}=z
\end{array} \\
\text { or: } & \mathbb{X}^{\prime}=O \cdot \mathbb{X} \quad \text { where: } \mathbb{X}=(\mathbf{r}, i c t) \\
& \text { and } O \text { is the orthogonal matrix: }\left(\begin{array}{cccc}
\gamma & 0 & 0 & i \gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-i \gamma \beta & 0 & 0 & \gamma
\end{array}\right) \\
\text { 4-vectors: } & \mathbb{U}=\beta c=\gamma(\mathbf{v}, i c) \quad \mathbb{P}=m_{0} \mathbb{U}=(\mathbf{p}, i E / c)=m_{0} \gamma(\mathbf{v}, i c)
\end{aligned}
$$

1. Two photons travel along the x-axis of S, with a constant distance L between them. Prove in S^{\prime} the distance between these photons is $L(1+\beta)^{\frac{1}{2}} /(1-\beta)^{\frac{1}{2}}$
2. In the S^{\prime} frame an electron moves straight down the the y^{\prime}-axis, with $\beta_{e}=.95$. Find the 4 -velocity \mathbb{U}^{\prime} of this electron in the S^{\prime} frame. As usual, the S^{\prime} frame moves with velocity $\beta=.99$ down the x-axis of frame S. Find the 4 -velocity \mathbb{U} of this electron in the S frame. Sketch the electron's trajectory as seen in the S frame. Calculate the direction of motion and speed as seen in the S frame.
3. Consider the 4 -momentum $\mathbb{P}=a(3,-2,1, i 4)$ where a is a constant. Calculate \mathbb{P}^{2}. What is the rest mass of this particle? What is γ for this particle? What is the velocity of this particle? What is the speed of the particle?
In the rest frame of this particle, what is the value of \mathbb{P}_{4}^{\prime} ?
4. Consider the tensor $T_{\mu \nu}$ that in the S frame has the following values:

$$
T_{\mu \nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & a
\end{array}\right)
$$

Find $T_{\mu^{\prime} \nu^{\prime}}$, i.e., $T_{\mu \nu}$ in the S^{\prime} frame. Report an invariant that can be formed from $T_{\mu \nu}$ and its value.
5. In the lab frame (S) projectile particle A (mass: m_{A}) collides with the stationary target particle B (mass: m_{B}) to produce a new particle C (mass: m_{C})... that is:

$$
A+B \rightarrow C
$$

Show (derive) that A must have lab-frame energy:

$$
E_{A}=\frac{m_{C}^{2}-m_{A}^{2}-m_{B}^{2}}{2 m_{B}} c^{2}
$$

for this reaction to occur.
6. Assume that \mathbb{D} is a 4 -vector field with components

$$
\mathbb{D}=(x, y, z, 0)
$$

Find $\mathbb{D}^{\prime}\left(x^{\prime}, c t^{\prime}\right)$, i.e., the vector field \mathbb{D} as seen in the S^{\prime} frame and expressed in terms of the S^{\prime} coordinates. Calculate $\partial_{\mu} \mathbb{D}_{\mu}$ and $\partial_{\mu}^{\prime} \mathbb{D}_{\mu}^{\prime}$. Is the result invariant?
7. Consider the attached Minkowski diagram. The unit of length is light-years; the unit of time is years. Quartet, the home planet of the Quartons, is motionless in the S frame, three light years to the left of the origin. Three years ago a spaceship left Quartet (i.e., the event $(x, c t)=(-3,-3))$. According to observers in S, the spaceship traveled for 3 years toward the origin at a speed of $\frac{1}{3} c$. It then stopped and sent a radio signal back to Quartet asking if it should continue. As soon as it received the signal, Quartet replied: "yes, continue on to the origin". On the supplied diagram accurately sketch the world line of spaceship and the radio signals.

According to the S^{\prime} frame, at approximately what times (t^{\prime}) and locations (x^{\prime}) did the spaceship start and stop according to the S^{\prime} frame. Does the traveling spaceship have a positive or negative velocity in the S^{\prime} frame?
Folks in the S frame measure the length of rod that is at rest in S^{\prime} : one end at $x^{\prime}=0$ the other at $x^{\prime}=1$. Label with As the two events associated with this measurement. Show that the result is less than one light year. Folks in the S^{\prime} frame measure the length of rod that is at rest in S : one end at $x=0$ the other at $x=1$. Label with Bs the two events associated with this measurement. Show that the result is less than one light year.

Folks in S measure the time it takes for a calendar at $x^{\prime}=2$ to click off one year (i.e, $t^{\prime}=0 \rightarrow t^{\prime}=1$) Label with Cs the two events of this measurement. Show that the result is longer than one year.

