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The RMS Titanic was an ocean liner that struck an iceberg and sank 14/15 April 1912 on its
maiden voyage to New York. More than 1,500 of the estimated 2,224 passengers and crew died in
the accident making this one of the largest maritime disasters outside of war. The ship’s passengers,
of course, varied in age and sex, and included luxury travelers in first-class and poor immigrants
in third-class. However, not all passengers were equally likely to survive the accident. We use real
passenger data (a subset) to learn who were more likely to survive.

Using github or the class website, find and load the file titanic.csv into a data.frame df.

1. Describe df: number of observations, columns and the data type of those columns. The
column meanings should be clear except perhaps for Pclass, which encodes the type of
ticket: 1st class, 2nd class, 3rd class (first class being the expensive ticket). summarize the
data; record the numbers of Survived, male/female, 1/2/3 class, average Age and Fare.

2. Calculate the below probabilities from the corresponding whole number ratios. Here S=survived,
G=gender, C=passenger class

(a) P (S | G == “female”) — i.e., the probability you survived given you are female. Do
note that this is not the same as P (S & G == “female”)

(b) P (S |G == “female” & C == 1) (the probability first-class females survived).

(c) P (S | G == “female” & C == 2)

(d) P (S | G == “female” & C == 3)

(e) P (S | G == “male”)

(f) P (S | G == “male” & C == 1)

(g) P (S | G == “male” & C == 2)

(h) P (S | G == “male” & C == 3)

You can certainly calculate the above quantities by careful subsetting, using sum to count
cases of logical variables and then forming the quotient, but there are much faster and easier
methods to get answers (but a bit advanced, and not really part of this course). xtabs seeks
to explain one variable by cross tabulating (breaking up) the cases according to the values in
some other columns. This is expressed with a “formula” where the variable to be explained
(the y to be explained) is expressed as a formal sum of the variables that will do the explaining
(one or more xs). A formula then is of the form: y~x (“y tilde x”). The answer produced is
the sum of the y in those cases (for a logical variable this is the count of T) for each of the x

possibilities.

> xtabs(Survived~Sex+Pclass,data=df)

Pclass

Sex 1 2 3

female 91 70 72

male 45 17 47

> xtabs(!Survived~Sex+Pclass,data=df)

Pclass

Sex 1 2 3

female 3 6 72

male 77 91 296

The first table says 91 first-class females survived and the second says 3 first-class females died.
If there is no y in the formula (e.g., ~Sex+Pclass+Survived) xtabs will count the occurance
of all cases, in this case making a 3d contingency table (two 2d tables to be stacked).



A second method uses the data plyer package, loaded by library(dplyr). This package adds
lots of data wranging functionality, and I use it ALL the time, but it’s not really part of class.
A basic function is a pipe: %>% that takes the output of the previous command and sends it
along to a following command. Just one nice aspect of this is if you put a data.frame into
the pipe, you don’t have to repeat that data.frame name when referring to columns. Here’s
what this looks like:

> library(dplyr)

> df %>% group_by(Sex,Pclass) %>%

summarize(mean(Survived),sum(Survived),length(Survived))

# A tibble: 6 x 5

# Groups: Sex [2]

Sex Pclass ‘mean(Survived)‘ ‘sum(Survived)‘ ‘length(Survived)‘

<fct> <int> <dbl> <int> <int>

1 female 1 0.968 91 94

2 female 2 0.921 70 76

3 female 3 0.5 72 144

4 male 1 0.369 45 122

5 male 2 0.157 17 108

6 male 3 0.137 47 343

Here you see the often-used trick that the average of a logical variable is the proportion that
is T, the sum of a logical is the count of T, and the length of a vector is the count of all the
possibilities.

3. A basic property of probability is

P (A) =
∑

i

P (A|Bi)P (Bi)

where the Bi disjointly cover all possibilities. Test this out for female survival (A) expressed
in terms of three Pclass (Bi, i = 1, 2, 3). Write each probability in this expression in terms
of an integer number of females (use the results above) in the numerator and denominator.
See that the result must be true by simple algebra.

4. Bayes Theorem says:

P (A|B) =
P (B|A)P (A)

P (B)

Let A be that the passenger is 1st class (C = 1), and B be that the passenger survived
(S =T). Using Bayes Theorem, find the probability that a passenger was first-class, given
they survived. As above write out all four probabilities in the above equation as integer
ratios and show that the result must be true by simple algebra.

5. Events A and B are independent if

P (A & B) = P (A)P (B)

If A=survived and B=(G == “female”), show that the above does not hold so the two are
not independent. As above express each probability as a ratio of integers.

6. A glance at the numbers should be enough to convince you that survival outcome was not
independent of class, but sometimes a simple statistic can end all argument (or not1). Fisher

1I’ve observed both people being convinced by statistics they do not understand (successful bullying by stats),
and people remaining unconvinced in spite of statistics they do understand (pigheadedness).



Exact test and/or χ2 test reduce a contingency table to a p value for independence. (These
tests have different supports and do not typically produce the same p value, but the p values
should tell the same story.) χ2 is not appropriate if there are small counts-in-cell. Let’s make
survival contingency tables separately for females and males, and record the resulting p value.

> fout=df %>% filter(Sex=="female") %>% xtabs(~Survived+Pclass,data=.)

> fout

Pclass

Survived 1 2 3

FALSE 3 6 72

TRUE 91 70 72

> mout=df %>% filter(Sex=="male") %>% xtabs(~Survived+Pclass,data=.)

> mout

Pclass

Survived 1 2 3

FALSE 77 91 296

TRUE 45 17 47

> a=fisher.test(fout)

> b=chisq.test(mout)

Report the p-values. There is not much additional a Fisher test can report (there is no simple
odds ratio for this 2 × 3 table), but χ2 test can report the ‘expected’ counts-in-cell under
the assumed independence. Examine the structure (str) of the χ2 result and look at the
expected contingency table. Where do you see big differences between actual and expected?

7. Age is a continuous2 (rather than categorical) variable so we can’t proceed as above. One
option is to make it categorical by breaking up the range of possible ages into bins say:
child(0): Age ∈ [0, 9), tween(1): Age ∈ [9, 13), teen(2): Age ∈ [13, 20), twentyish(3): Age

∈ [20, 30), . . . . Once we have a categorical variable we can make a table of counts in each
bin. Unlike the above example, bins are usually the same width, so a uniform age distribution
would put the same number of counts in each bin. A plot of count-in-bin vs. bin-center is
called a histogram (hist, RCook p. 248). (Typically many bins will be used so a graphical
display of results is nicer than tabular results, but you can access the numerical data e.g.,
from $counts, $mids, etc.) R will automatically select bins (you can change it if you want:
breaks) and plot bars with height giving count-in-bin with the command hist. (By default
counts-in-bin is displayed; if you want proportion-in-bin try freq=F.)

Now we’re going to want to be comparing age distributions so we are required to make plots
with identical settings so they can be nicely superimposed. Since there are more males than
females, proportion rather than count will most often be of interest. (The proportion-in-bin
divided by bin-size—called density—will integrate to 1; i.e., the are under a histogram is
fixed at 1.) To get density we must turn off the default count display by setting: freq=F. If
we aim to superimpose the plots we’ll want the colors to be somewhat transparent; this is
called alpha blending. The fourth argument in rgb is the opaqueness, α; the first three are
the amounts of red, green, and blue. We’ll use blue for boys and red for girls.

> pM=hist(df$Age[df$Sex=="male"],xlim=c(0,80),breaks=seq(0,80,8),freq=F)

> pF=hist(df$Age[df$Sex=="female"],xlim=c(0,80),breaks=seq(0,80,8),freq=F)

> plot(pM, col=rgb(0,0,1,1/4), freq=F)

> plot(pF,col=rgb(1,0,0,1/4),freq=F,add=T)

(a) Using the above code, describe (words!) how the age distributions differ by sex.

2In this dataset almost all the ages are integers, so Age seems discrete. We ignore this.



(b) Now restrict the male/female data to just the first-class passengers. . . what changes?

(c) Now compare the age distribution of males in first-class to males in third-class

(d) Now compare survivors of all sexes to the dead.

(e) Now compare the counts of all males and male survivors. The difference in the the bars
counts the dead. You can judge by eye the proportion that survived in each age bin.

(f) Now break this male survive/all histogram data down by Pclass and describe the results

i. in just first class: age histogram of counts of all males and male survivors.

ii. in just second class: age histogram of counts of all males and male survivors.

iii. in just third class: age histogram of counts of all males and male survivors.

(g) Now compare the counts of all females and female survivors.

(h) (FYI) smoothed histograms a.k.a. density plots are easy in R: plot(density(df$Age))
and multiple density plots can be combined: lines(density(df$Age[df$Sex=="female"]))
(RCook p. 250).

8. Recall that the t-test (t.test) is used to look for differences in the mean of datasets. Does
the mean age of first-class women differ significantly from that of first-class men? Does the
mean age of first-class men differ significantly from that of third-class men?

9. Boxplots3 (RCook p. 246) are produced if plot is given a factor as the x value. In this dataset
we essentially have no factors so we must either convert say Pclass or Survived to a factor
using as.factor, or we can directly plot a boxplot using the boxplot command. Note that
boxplot uses the formula format discussed above to denote the x and y values to be plotted.
So, for example,

> boxplot(df$Fare~df$Pclass)

displays how fares vary with passenger class. Notice that the bottom whisker seems to touch
zero for each class; additionally note that, particularly for third-class, things are getting
scrunched together. To spread out wide ranging values, log scales are suggested, but with
zero values of Fare log transformations are impossible (NaN). Create a data.frame df2 in
which the zero-fare rows have been deleted. Now:

> boxplot(log(df2$Fare)~df2$Pclass)

Plotting the log(y) solves the scrunched problem, but it obscures the actual values of the
data. To label the log-scale with the actual data values use the parameter log as below.

> boxplot(df2$Fare~df2$Pclass,log="Y")

Drilling down a bit deeper note that the minimum (non-zero) fare in first-class was an outlier
(and hence separately displayed) for the log transformation, whereas it was just the minimum
(and not exceptional) for the normally labeled plot. We leave this bit of arcanea behind.

Find and report who paid that low price for first-class, and did (s)he survive? I’d suggest the
R command which.min which reports where (the integer index) the minimum is found. (min
finds the minimum value, but I’m not requesting that.)

3see also: http://www.physics.csbsju.edu/stats/display.distribution.html


