
Physics 360 Current Population Survey (CPS) November 2019

The Current Population Survey (CPS) is the U.S. Government’s monthly survey of employment and
labor force participation (find them at nber.org). Jobs and households are complex things to describe
with numbers, and they evolve with time. Hence, unfortunately, the survey results are complex and
evolve with time. The version I worked with (March 2018) included 351,459 records, each 1076 bytes
long encoding more than 700 variables. For example, a 39 year-old man reports he is paid by the hour
at a rate of $0.00/hour, works 45 hours/week, and grosses $1250/week every week. (About 4,000 of
the nearly 19,000 employees report they are paid by the hour at a rate of $0.00/hour.) A 33 year-
old women with a masters degree works 2 hours/week at $50.00/hour, for an annual income of a few
thousand dollars, but lives well above the defined poverty line. I’m sure that those 700 variables would
explain these anomalies, if I really cared to understand the details. (Understanding the data really is
Job One for a data analyst, but frankly I was just looking for an interesting dataset. Don’t follow my
carelessly lazy example in real life.) I made my life easier by stealing digested CPS results from the
book: Econometric Data Science: A Predictive Modeling Approach by Francis Diebold at UPenn.edu.
However, only three years were included: 1995, 2004, 2012, so I decided to augment those by digesting
2018. Diebold’s data is a much simplified subset of the full CPS with just the following variables:

FEMALE — int: really a logical; 1 iff female, 0 otherwise

NONWHITE — int: really a logical; 0 iff race=white, 1 otherwise

UNION — int: really a logical; 1 iff union member, 0 otherwise

EDUC — int: approximate years of education; e.g., B.A.=16, Ph.D.=20

AGE — int: in years

EXPER — int: calculated experience (not part of CPS): AGE-EDUC-6

WAGE — num: unit: $/hour, estimated using other CPS data

LNWAGE — num: natural log of WAGE

Since I created the 2018 file I decided to add additional variables from CPS that interested me. Note
that MJIND, MJOCC, GEDIV are actually unordered integer categories; They will need to be converted
to factors before use (see below), The file cps18.txt defines the integer code as text.

VET — logi: True if a U.S. veteran

PRCITSHP — logi: True if not a U.S. citizen

MJIND — int: the category of the industry employing the individual (1:13)

MJOCC — int: the category of the employee’s occupation (1:10)

NOEMP — int: ordered categories of the employer’s size by number of employees (0:6)

GEDIV — int: census code for location of job (1:9)

PTOT — int: ordered categories of total personal income (1:41)

PERLIS — int: ordered poverty categories: 1=below poverty level, 4=above 1.5× poverty level (1:4)

HEA — int: ordered categories of increasing unhealth (1:5)

1. For each of the four datasets (1995, 2004, 2012, 2018) make a linear model, e.g.:

d18a=lm(LNWAGE~FEMALE+NONWHITE+UNION+poly(EDUC,2)+poly(AGE,2),data=D18)

summary(d18a)



The datasets have filenames of the form outputxx_update.csv where xx=95, 04, 12, 18; You will
need to load each individual dataset into R, e.g., D18=read.csv("output18_update.csv")

Make a nice table showing how the estimated coefficient of FEMALE, NONWHITE, UNION changed
over the four years; also include the adjusted R2 for each fit. (I would do this by copy & paste into
a spreadsheet like gnumerics.) Note: since we are fitting log(WAGE) the coefficients of FEMALE,
NONWHITE, UNION essentially show the fractional change in wages associated with each variable.
Unless we specify poly(EDUC,2,raw=TRUE) the coefficients of the EDUC, AGE poly lack immediate
interpretation, so don’t bother to report those.

Find the mean of FEMALE, NONWHITE, UNION, EDUC, AGE, WAGE for each dataset. Include these
values in the above table. Note that the mean of the first three variables would be the fraction
of the surveyed population in each class. Report: which quantities in the table show consistent
change (monotonic increase or decrease)? Report: which quantities show nearly consistent change
(at most one exceptional year)?

The residual is the difference between the actual and the model (actual–model). The reported
Residual standard error is essentially the standard deviation of those residuals, and hence
shows approximately the range of deviation between model and reality. Your fits should have dis-
played Residual standard error of about 0.5, which means that the actual LNWAGE is approxi-
mately the model ±0.5, which in turn means the actual WAGE is approximately exp(model± 0.5),

or exp(model)×÷ exp(0.5), where exp(0.5) ≈ 1.65, so the calculated WAGE might be high by 65% or

low by 40%. This relatively large scatter is demonstrated by the smallish R2
≈ .3, which verbally

might be reported as “only 30% of the variation is explained by the model”.

2. The 2018 dataset includes many more variables; report which are significant:
out18b=lm(LNWAGE~.-MJIND-MJOCC-GEDIV-PTOT-WAGE,data=D18)

The first three variables are excluded (the minus sign) as they include a large number of categories
in no particular order; PTOT is excluded because it is (in theory) essentially a version of (i.e., highly
colinear to) WAGE. Note that EXPER ends up being excluded: since EXPER is just a linear combination
of AGE and EDUC, it will be automatically undefined because of the resulting singularity. For each
of the following situations report if wage increase or decrease is associated with the variable and
if the association was found to be significant (defined here as p < .05). (A) You are a vet, (B)
You are not a U.S. citizen, (C) You work for a large company, (D) You live well above the poverty
line, (E) Your health is poor. You will need to consult cps18.txt to decode the direction of these
ordered categorical variables.

3. We investigate next the male/female wage differential in various industries (13 options), occupa-
tions (10 options), and geographic locations (9 options). (Some of these options hugely reduce the
number of samples, for example, just 10 female wages are reported in the mining industry.) We
can cover all of these options quickly by defining functions which do the t-tests on subsets of D18:

goI=function(i){return(t.test(WAGE~FEMALE,data=D18,subset=(MJIND==i))$p.value)}

sapply(1:13,goI)

goO=function(i){return(t.test(WAGE~FEMALE,data=D18,subset=(MJOCC==i))$p.value)}

sapply(1:10,goO)

goG=function(i){return(t.test(WAGE~FEMALE,data=D18,subset=(GEDIV==i))$p.value)}

sapply(1:9,goG)

You should find that the majority of industries, occupations and all but one geographic region
show male/female wage differences. Q: Report the names of the NOT significant categories, e.g.,
which region did not show a significant male/female wage difference?

4. Several of the industries/occupations show significant education and age differences between the
sexes, and we know those are also important features affecting wages. So we’ll try to ‘control’ for
those variables by putting nearly everything into the regression formula. (Note: another approach
would be to use KNN: find the average wage of men who nearly match the characteristics of each



woman.) MJIND, MJOCC, GEDIV are currently encoded as integers but are unordered categories.
We need to convert them to factors.

D18a=D18

D18a$MJIND=as.factor(D18a$MJIND)

D18a$MJOCC=as.factor(D18a$MJOCC)

D18a$GEDIV=as.factor(D18a$GEDIV)

a18=lm(LNWAGE~FEMALE*MJOCC+FEMALE*MJIND+FEMALE*GEDIV+NONWHITE+UNION+poly(AGE,2)+

poly(EDUC,2),data=D18a)

Note that the base class of factors is included in the Intercept. For the following assume that the
poly of AGE and EDUC produce numerical value zero, What is the model value if: (A) nonwhite,
female union member and MJIND11, MJOCC4, GEDIV9 (B) white, male, non-union member, and
MJIND1, MJOCC1, GEDIV1, (C) white, female non-union member and MJIND1, MJOCC1, GEDIV1.

Note that the listed MJOCC coefficients are generally significant and negative. What does that
mean (negative compared to what)? Provide the name of the MJIND that provides the biggest
wages for males. Generally the interaction terms with females are not significant. If a female
wanted an occupation where she would have a significant wage boost compared to males, which
occupation should she choose? What set of options should a female select to maximize her wages?
What is the resulting regression model value (still assuming the poly of AGE and EDUC produce
numerical value zero). What set of options should a male select to maximize his wages? What is
the resulting regression model value.

5. The current chapter covers error estimation using various sampling techniques, so we should
practice some of that, even though this dataset will not prove to be a great example. Clearly EDUC

and AGE have nonlinear effects which we have modeled using second order poly. What order of
poly is best for AGE? In order to see some effect, I’ve decided to use the (smaller) D95 dataset,
and I even go to the unusual step of selecting a training set smaller than the testing set, both
choices designed to minimize the constraints on training so it can roam into over-fitting.

D95a=D95

index=sample(nrow(D95a),floor(nrow(D95a)/3))

D95train=D95a[index,]

D95test=D95a[-index,]

Etest=rep(0,10)

Etrain=rep(0,10)

for (j in 1:10){

d95train=lm(LNWAGE~FEMALE+NONWHITE+UNION+poly(EDUC,2)+poly(AGE,j),data=D95train)

Etrain[j]=sd(d95train$residuals)

out=predict(d95train,D95test)

Etest[j]=sd(out-D95test$LNWAGE)

}

Etrain

Etest

Note the initial creation of the vectors Etrain & Etest to store error values about to be created
inside the loop: for (j in 1:10). Note the upper-case D and lower-case d.

You can run this set of commands a few times; different index should result is slightly different
outcomes. The expected outcome: Etrain shows monotone decreasing behavior, while Etest gen-
erally follows Etrain, until over-fitting causes Etest to increase even as Etrain shows continuous
improvement. The effect is muted in this dataset as most of the variation is unrelated to AGE and,
even with the reduced data set, there are many more datapoints than adjustible parameters.



6. We can try k-fold cross validation; we switch back to the larger D18a dataset. The following code
tries 10 × 10 poly for EDUC and AGE and uses k = 10 fold cross validation. Consider that this is
1000 fits to a data.frame with more than 10,000 rows. Give it a minute to complete.

library(boot)

delta2=matrix(rep(0,100),ncol=10)

aic=matrix(rep(0,100),ncol=10)

for (i in 1:10){

for (j in 1:10){

g18a=glm(LNWAGE~FEMALE+NONWHITE+UNION+poly(EDUC,i)+poly(AGE,j),data=D18a)

delta2[i,j]=cv.glm(D18a,g18a,K=10)$delta[2]

aic[i,j]=g18a$aic

}

}

delta2

aic

Notice the (nested) double loop structure. The first two lines initialize two 10 × 10 matrices to
hold the results. delta2 is a fit-error estimate (mean square; take the sqrt of it to get something
like the ‘residual standard error’); aic should be familiar to you. Notice that even though we
are making linear models we are using glm not lm; lm lacks a nice interface with cross validation.
Note that the new action is this code is the cv.glm function. Q: report the (i, j) with the lowest
delta2, but frankly it’s rather constant.

The results of this are perhaps disappointing: there is no sign of over-fitting (i.e., a worsening
fit with greater flexibility)—the scatter is mostly unrelated to AGE & EDUC and 10,000 datapoints
limits the ability to over-fit using those paramters. Nevertheless there can be no doubt that
overfitting is occurring as EDUC is actually an ordered category with just 12 categories and we’re
fitting it to a 10th degree poly.

With multi-variate problems it is difficult to ‘see’ what the fit function looks like. In this problem
most of our variables are factors (and so just change the intercept). If we put together a data.frame
where those factors are fixed, and EDUC has a continuous run, we can plot those results. We can
also plot as points the prediction for the 12 actual category values of EDUC. I’m going to include
with those points three values for AGE: 20, 40, 60. You will see that there is little difference between
40 & 60, while 20 is distinctly less.

ed=sort(unique(D18$EDUC))

points=data.frame(ed,rep(F,36),rep(F,36),rep(F,36),c(rep(20,12),rep(40,12),rep(60,12)))

colnames(points)=c("EDUC","FEMALE","NONWHITE","UNION","AGE")

lnwp=predict(g18a,newdata=points)

ed=seq(0,20,length.out=200)

line=data.frame(ed,rep(F,200),rep(F,200),rep(F,200),rep(40,200))

colnames(line)=c("EDUC","FEMALE","NONWHITE","UNION","AGE")

lnwl=predict(g18a,newdata=line)

plot(points$EDUC,lnwp)

lines(line$EDUC,lnwl,add=T)

See the clear over-fitting! The fit is running wild at EDUC values that are not in the dataset. If we
return to poly(,3) models more rational behavior is seen:

g18b=glm(LNWAGE~FEMALE+NONWHITE+UNION+poly(EDUC,3)+poly(AGE,3),data=D18)

lnwp=predict(g18b,newdata=points)

lnwl=predict(g18b,newdata=line)

plot(points$EDUC,lnwp)

lines(line$EDUC,lnwl)



Q: What EDUC yields the lowest wages?

To see effective use of cross validation we need fewer data points so flexibility has some freedom to
flex. Let’s return to yacht_hydrodynamics.csv (also not an ideal example as its really gridded
data) and mess with the polynomials related to boat speed:

df=read.csv("yacht_hydrodynamics.csv")

lin3=lm(RR ~ poly(Fr,6)+P.C*Fr+L.D*Fr+L.B*Fr+I(P.C*Fr^6)+I(L.B*Fr^6)+I(L.D*Fr^6)+

I(CoB*Fr^6), data=df)

delta2=matrix(rep(0,100),ncol=10)

aic=matrix(rep(0,100),ncol=10)

for (i in 1:10){

for (j in 1:10){

gYHa=glm(RR ~ poly(Fr,i)+P.C*Fr+L.D*Fr+L.B*Fr+I(P.C*Fr^j)+I(L.B*Fr^j)+I(L.D*Fr^j)+

I(CoB*Fr^j), data=df)

delta2[i,j]=cv.glm(df,gYHa,K=10)$delta[2]

aic[i,j]=gYHa$aic

}

}

delta2

aic

Warnings will be generated, but it looks like AIC likes (i, j) = (7, 6) and delta2 likes (6, 6) (results
will vary for these random selections). Q: what is your delta2 at (6, 6)?

LOOCV would be crazy with 10,000 datapoints; we can try it with yacht_hydrodynamics:

for (i in 1:10){

for (j in 1:10){

gYHb=glm(RR ~ poly(Fr,i)+P.C*Fr+L.D*Fr+L.B*Fr+I(P.C*Fr^j)+I(L.B*Fr^j)+I(L.D*Fr^j)+

I(CoB*Fr^j), data=df)

delta2[i,j]=cv.glm(df,gYHb)$delta[2]

aic[i,j]=gYHb$aic

}

}

delta2

aic

The code is identical to the k-fold cross validation except the K=10 has been dropped. This will
do approximately a third of a million fits, and so takes much longer than k-fold CV. aic should
be exactly the same (as it’s produced from the fit not the CV process); For me delta2 pointed
to (7, 6) with a broad minimum. Q: what was your delta2 at (6, 6)?

For a bootstrap example, return to the simple CPS fits; note that the standard error is available
so there is no particular reason to get it via bootstrap, but that’s the plan.

d95a=lm(LNWAGE~FEMALE+NONWHITE+UNION+poly(EDUC,2)+poly(AGE,2),data=D95)

summary(d95a)

Take a look at the output of sample(5,10,replace=T): you get 10 samples of the integers 1:5 with
some repeated. We aim to make a random subset of the rows of a data.frame by such a sample of
1:nrow; in the D95 data.frame there are 1323 rows, so we’ll use sample(1323,1323,replace=T),
e.g.,

lm(LNWAGE~FEMALE+NONWHITE+UNION+poly(EDUC,2)+poly(AGE,2),data=D95,

subset=sample(1323,1323,replace=T))

If you run this command several times (up arrow) you will get slightly different results because
different subset will be processed. The boot function will itself make the sample( , ,replace=T)



and pass the result as the second argument to a boot function you define. (The first argument of
your boot function must be the data.frame.)

bootit=function(d.f,index){

return(coef(lm(LNWAGE~FEMALE+NONWHITE+UNION+poly(EDUC,2)+poly(AGE,2),data=d.f,

subset=index)))

}

boot(D95,bootit,1000)

The boot takes 1000 samples of your rows, and reports statistics on the (vector) output of the boot
function you defined. For each coefficient report the value and error from boot and lm. . . make a
nice table.


