
Physics 360 Baby Names I November 2019
reshape2, melt

In this course we will generally deal with data.frames in ‘wide’ (a.k.a. frozen) format: each row
completely describes a situation—all of the relevant control and response variables are in columns
in the row. For example a weather station’s report might have columns: date/time, temperature,
pressure, humidity, wind direction, wind speed, cloud cover, rain, snow, hail, Occasionally
data is found in ‘long’ (a.k.a. tall or melted) format. A weather station log might then be in a
three column form where the first column gives date/time, the second column names the quantity
measured, and the third column gives the numerical value. E.g.:

time key value

00:01 “temperature” 68.2

00:02 “pressure” 29.963

00:10 “rain” 0

00:15 “wind direction” 180

00:15 “wind speed” 0

00:16 “temperature” 67.5

00:17 “pressure” 29.979
...

...
...

This format might recognize that measurements are not actual simultaneous, or that some quantities
are not relevant (e.g., snow in July), or that some quantities may fluctuate more and hence require
more frequent updates. Event monitors (for example: computer web logs) are often in this long
form. I think its important for you to see this alternative form and learn a bit about how to
convert between the two forms (even if you will probably not meet the long form again in this
course). In going long −→ wide you need some sort of matching criteria (what rows belong
together as columns in a wide row) and recognize that NAs will be produced if every key in not
included in the matching rows. (For example in a web log you might want to group together all
the pages visited by a particular IP address during a visit. Unvisted pages would end up as NA.) In
going wide −→ long, note that a data.frame value must have a fixed data type (numeric, string,
etc.. . .). Thus a wind direction of “South” can not fit with a temperature of 68.2. (Of course,
anything can fit in a string, but you really can’t plot a temperature of “68.2”.)

Using either the github or class web site, find the folder baby_names which contains two files
wideF.csv and wideM.csv. These files contain (respectively) female and male names of babies born
in the US by years (1880–2017). Each file has 1001 columns (hence: “wide”) and 138 rows: one
for each year. The first 1000 columns have names V1, V2, ..., V1000 and contain (respectively)
the most common baby name that year, the second most common baby name, etc. Column 1001
is named year.

Select either the male or female file, load it into R, and confirm that the most common name in 1880
was John (or Mary). Note the two ways used below to select this information. You can specify the
row/column numbers by number: [1,c(1,1001)] says row number 1 and c(1,1001) is a vector of
length 2 with values 1 & 1001 reporting that we want those two columns. (The c means ‘combine’
to make a vector; the fact that we are here talking about columns has no connection with that c.)
Or we can select the vector that is a column using the $ notation and ask for the first row in that
vector.

> D=read.csv("wideM.csv",stringsAsFactors =F)

> D[1,c(1,1001)]

V1 year

1 John 1880

> D$V1[1]

[1] "John"

> D$year[1]

[1] 1880

or for females:

> D=read.csv("wideF.csv",stringsAsFactors =F)

> D[1,c(1,1001)]

V1 year

1 Mary 1880

> D$V1[1]

[1] "Mary"

> D$year[1]

[1] 1880

Remark: If you’re having problems reading in the file, the problem may be the file path: i.e.,
what folder (“working directory”=wd) has the desired file compared to where the program thinks
such files are to be found. See: getwd(), setwd(), list.files(). In R-studio you can set the
working directory under the menu item Session.

Remark2: stringsAsFactors=F Recall that strings are a sequence of characters, exactly what
you would think of for names. However strings are awkward things inside data.frames as they have
no fixed size. Thus the default for R is to treat strings as factors. Recall factor: a series of categories
internally stored as an integer (nice for a data.frame column), but externally decoded (invisibly to
the user) in terms of a string. This is great for categories that repeat in the column (e.g., “male”
,“female”): just store a few integers rather than make possible space for an arbitrary variable-length
string. To the user it will appear the same, and compute the same. Not uncommonly the strings
are not repeated in a column (e.g., user names), and you might have a factor with a thousand
categories. Actually this is still no problem for R (if the set of names does not frequently change).
In such circumstances I’ve found actual strings often are easier to deal with.

We could now very easily answer the question: how has the 100th most common name changed
with time: D[,100]

> D[,100]

[1] "Calvin" "Anthony" "Sidney" "Clifford" "Dan" "Victor"

[7] "Leroy" "Emil" "Lloyd" "Horace" "Sidney" "Norman"

[13] "Horace" "Percy" "Victor" "Cecil" "Isaac" "Everett"

[127] "Devin" "Richard" "Kaden" "Miguel" "Bentley" "Jaden"

[133] "Ryder" "Juan" "Luis" "Elias" "Bentley" "Jameson"

or

> D[,100]

[1] "Emily" "Olive" "Charlotte" "Irene" "Belle"

[6] "Susan" "Kate" "Mollie" "Virginia" "Nannie"

[11] "Virginia" "Caroline" "Caroline" "Charlotte" "Charlotte"

[131] "Paige" "Kaitlyn" "Andrea" "Morgan" "Hadley"

[136] "Alexandra" "Faith" "Madeline"

Just looking at your output, report (Q1) the 100th most common name in the 39th row which was
in the year: 1879+39=1918. Q2: why add 1879 and 39, given that the first year is 1880?

I don’t really think people are interested in these sorts of questions. I believe the most likely inquiry
would be: plot how some particular name changed in popularity over the years. That is, we’d like
to know which column has "Tom" (or "Ellen") in the run of years 1880–2017. You can directly
answer this question for the year 1880 (or any selected year):

> which(D[1,] == "Tom")

[1] 40

> which(D[1,] == "Ellen")

[1] 61

This command asks: in the first row (a vector with 1001 entries) which entry equals "Tom" (or
"Ellen"). Q3: I was born in 1952 (Ellen was born in 1956) what rank was "Tom" (or "Ellen") in
the birth year?

You could programatically use which to fill a vector with name-rankings, but it all seems a little
awkward. If we convert to long form we could immediately pick out the columns that have any
particular value.

> library(reshape2)

> Dlong = melt(D, variable.name = "key", value.names = "value", id.vars = "year")

> str(Dlong)

’data.frame’: 138000 obs. of 3 variables:

$ year : int 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 ...

$ key : Factor w/ 1000 levels "V1","V2","V3",..: 1 1 1 1 1 1 1 1 1 1 ...

$ value: chr "John" "John" "John" "John" ...

I hope the command arguments of melt make sense: the column names will end up in a column
named by variable.name in this case key, the values that were in those columns will be in a
column named by value.names, in this case value, and the column(s) named by id.vars will be
reported in each new (now thin) row.

You may not have noticed but there were NAs in the D data.frame. Q4: how many NAs in your
long (melted) data.frame? It really doesn’t matter for what follows, but we might as well get rid
of them.

> sum(is.na(Dlong$value))

> which(is.na(Dlong$value))

> Dlong=Dlong[! is.na(Dlong$value),]

Note that the ! means NOT, and the ,] means all the columns: thus all of the columns for any
row for which Dlong$value is NOT NA are used to make (overwrite) the data.frame. Q5: how
many rows remain in Dlong?

Currently Dlong$key is a “Factor w/ 1000 levels”. We really want the numerical (integer) rank, i.e.,
the value that follows the V in the column name. Recall that a factor (finite set of possibilities in a
category) uses a stand-in integer for storage that can be decoded (using level) for display. Typically
the levels are meaningful names (e.g., character strings or words) whereas the integer stand-in
is of limited interest. If we go back to the weather station long data.frame example, the variable
names in key are probability stored as factors. That is the level "temperature" in the factor key

might be (internally, invisibly) stored as the integer 1; "pressure" as 2, "wind direction" as
3, etc. This abbreviation allows much more efficient use and storage of the data.frame (integers
are stored rather than variable length strings). If we change the names of those levels (with the
integers in the data.frame untouched) then automatically (and essentially with no CPU cycles) all
the key values will immediate appear as changed.

> levels(Dlong$key)=sub("V", "", levels(Dlong$key))

Lets take apart this command. levels(Dlong$key) lists the 1000 column names that became levels
of the variable key: "V1", "V2", "V3",..., "V1000". sub("V", "", substitutes nothing (="")
for "V" in what follows producing 1000 strings "1", "2", "3",..., "1000" and that vector of
strings will then replace the levels of Dlong$key. So Dlong$key remains a factor with 1000 levels,
but the name of those levels has changed and now looks like a number (but importantly is still a
string). So now we convert that column of a factor to a column of the corresponding numerical
value of the level:

> Dlong$key=as.numeric(Dlong$key)

> str(Dlong)

’data.frame’: 137997 obs. of 3 variables:

$ year : int 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 ...

$ key : num 1 1 1 1 1 1 1 1 1 1 ...

$ value: chr "John" "John" "John" "John" ...

> head(Dlong)

year key value

1 1880 1 John

2 1881 1 John

3 1882 1 John

4 1883 1 John

5 1884 1 John

6 1885 1 John

See that Dlong$key has now become a num, a number.

Important Remark: Strings (a sequence of characters), integers, and real numbers (e.g., "one"
or "1", 1, 1.) are totally different things to a computer. In R we add to these basic types Factors
which are used to denote possibilities in a category. The levels of that factor determines how those
categories are displayed (as strings); the internal representation is essentially invisible. We can
have vectors (a 1d ordered collection) of any single basic type, but a vector must include just one
type. Lists in R (a new data type) are a generalization of vectors that allows a mix of basic types.
The locations within a list are denoted by doubled square brackets (list[[1]] would be the first
element of list) or optionally by name using the $ notation for a named element.

Finally we can easily plot the rank of most any name in one line:

> plot(Dlong$year[Dlong$value=="Tom"],Dlong$key[Dlong$value=="Tom"])

The vector of x values is obtained by subsetting Dlong$year to just the ones that relate to "Tom"

Dlong$value=="Tom" (this is a vector of True and False). We get the corresponding y values (the
ranks) that are in Dlong$key and plot those (x, y) values as points (a ‘scatter plot’).

If you use Rstudio, you can immediately Export this plot as a pdf. If you use the raw command
line (as I do) several additional commands are required:

dev.new()

pdf(file="tom.pdf", width=10,height=7)

plot(Dlong$year[Dlong$value=="Tom"],Dlong$key[Dlong$value=="Tom"])

dev.off()

Much nicer graphics are available using the ggplot2 library (which I’ll not be covering in this
class). Nevertheless we can do a lot better just using default plotting.

> plot(Dlong$year[Dlong$value=="Tom"],Dlong$key[Dlong$value=="Tom"],

xlab="Year",ylab="rank", main="title here",pch=20)

pch controls the point plot symbol. If lines between points are required: type="l"; the line type is
then controlled by lty. (Q6) Make and hardcopy of a nice plot showing name-rank as a function of
time for some name, perhaps your own name; the data points should be filled triangles (use google
to find the required pch value).

Let’s say you want to display together Thomas along with Tom; we can add those points to the
existing plot:

> points(Dlong$year[Dlong$value=="Thomas"],Dlong$key[Dlong$value=="Thomas"],pch=17)

By default plot wants to plot the entire data.frame. So another way to make this composite plot
is to make a subset data.frame including just Tom & Thomas and then have plot do ‘all’ of that:

> Dsub=Dlong[Dlong$value=="Thomas" | Dlong$value=="Tom",]

> Dsub$value=as.factor(Dsub$value)

> plot(Dsub$year,Dsub$key, pch=as.integer(Dsub$value))

We needed to automatically change the pch for the different names so we needed to get a number
out of "Tom" and "Thomas". The solution was to convert the Dsub$value from a vector of strings
to a vector of factors (with two levels: Tom & Thomas). Factors can be converted to numbers
(because that’s what a factor actually is) whereas in general a string cannot be directly converted
to a number (but for example nchar is a function that reports the number of characters in a string,
so that’s one way to do a string →integer conversion). A brief tour throught default plot options
is in chapter 10 of RCook, again mostly not covered here. ggplot2 can do most anything, so there
are several book-length treatments of its many options. If I want to make a complex plot I typically
use a google search —and include the keyword ggplot— to tell me how to achieve the plot.

Remark: Within the reshape2 library the reverse of melt is dcast which does: long −→ wide.
In the popular tidr library, gather goes wide −→ long and spread goes long −→ wide. Base R
has a reshape command which also has these functionalities.

Physics 360 Baby Names II November 2019
scrape: RCurl, XML, rvest, impute: mice, Hmisc, . . .

These days, the web is a primary source for data. With luck you can directly download a .csv file
perfect for R to digest. However often data lies behind web pages designed to make access easy for
browsing humans. Automating access to such “easily accessible” data can be a challenge.

The Social Security Administration (SSA) provides a list of popular baby names for years since
1880: https://www.ssa.gov/OACT/babynames/ with a web form that allows you to display (on
your browser) tables of common baby names. The form includes a few options (e.g., year, number
of names to be provided) the aim perhaps is to answer what SSA considers common non-robotic
interests. But what if the question you want answered is more complex than allowed by their
options? For example: How has the popularity of your name changed over time? Are baby names
becoming more diverse? Are longer baby names becoming more common? If you had the entire
dataset, R could happily crunch through that data and answer arbitrary questions.

The topic of robotically mining the web for data (‘scrapeing’, ‘wrangling’) is beyond the aims of
this course, but I wanted to introduce you to such tools, so if you wanted to pursue such problems
(e.g., for your final project), you’d have a place to start.

The library RCurl essentially allows you to run a browser inside of R and capture the resulting
pages. The library XML allows you to convert tables on such pages into R data.frames. rvest is a
higher level package to do all of the above. Often the resulting data, which was designed for human
eyes, will have problems when viewed with robotic eyes. (E.g., What are the column names, and
can they be converted to nice colnames variables? What is a NA? How will the computer interpret
1,000,000 (three comma separated values?) or 1× 106 (superscripts? ×=x?) or 1E6?) I leave all
such questions aside, and simply comment that I used these tools to automatically download 138
pages for the years 1880–2017, and used R to massage the resulting 138 tables into a single .csv

file with each row reporting 1000 columns with the ranked 1000 most common male names and
a column for the year. While the Social Security site always provides male and female data in a
single table, I’ve made separate .csv files for males: wideM.csv and females: wideF.csv.

FYI: for srapeing data out of .pdfs I’ve found tabula helpful.

The issue of NA (“Not Available” or “Not Applicable” or ”No Answer”) data deserves a bit more
comment. If you are training or predicting data with NA values there is no foolproof fix. The
simplest fix is just to drop rows in a data.frame that include one or more NAs (complete.cases,
na.omit, drop na). However if you have lots of columns even a small NA probability can result
in a large fraction of faulty rows. For a factor variable NA may be a telling value, but you can’t
calculate with a numeric NA (nor a NaN = not a number, for example 1/0). “Imputation” is any
process that attempts to fill in NA blanks with values. “Multiple imputation” recognizes that any
replacement value has uncertainty. Therefore the entire dataset is duplicated with various possible
replacement values and the entire analysis is completed on each of these slightly different datasets.
The results of these analyses will of course differ slightly allowing you to measure how much the
imputation affects the results.

