Complete no more than 5 of the following problems

1. Chemists typically talk about different angular functions than do physicists. I dug out my old Physical Chemistry book and found reference to the following angular functions. Note that all of these functions just depend on the angles θ and ϕ, as in:

$$
p_{x}(\theta, \phi)=N_{x}\left(-Y_{11}(\theta, \phi)+Y_{1-1}(\theta, \phi)\right)
$$

but I've not bothered below to repeat " (θ, ϕ) " as each function's arguments. The Ns are positive constants that normalize each function; " p " is referring to $\ell=1$ not momentum.

$$
\begin{aligned}
p_{x} & =N_{x}\left(-Y_{11}+Y_{1-1}\right) \\
p_{y} & =i N_{y}\left(Y_{11}+Y_{1-1}\right) \\
p_{z} & =Y_{10} \\
\text { hybridized } s p^{3} & =N\left(\sqrt{2} Y_{00}+(1+i) Y_{11}+\sqrt{2} Y_{10}-(1-i) Y_{1-1}\right) \\
d_{x^{2}-y^{2}} & =N_{x^{2}-y^{2}}\left(Y_{22}+Y_{2-2}\right) \\
d_{y z} & =i N_{y z}\left(Y_{21}+Y_{2-1}\right) \\
d_{y^{2}-z^{2}} & =-N_{y^{2}-z^{2}}\left(Y_{22}+\sqrt{6} Y_{20}+Y_{2-2}\right) \\
d_{x y} & =i N_{x y}\left(-Y_{22}+Y_{2-2}\right) \\
d_{z x} & =N_{z x}\left(-Y_{21}+Y_{2-1}\right)
\end{aligned}
$$

(a) Using the raising and lowering operators, show p_{x} is an eigenfunction of L_{x} with eigenvalue 0 , i.e., $L_{x} p_{x}=0 \cdot p_{x}$.
(b) Show:

$$
L_{z} d_{x y}=\lambda d_{x^{2}-y^{2}}
$$

and report the value of λ.
(c) Consider the hybridized $s p^{3}$ wavefunction. Find N. If you measured L^{2} and L_{z} of this wavefunction, what values would be found and with what probability?
(d) The $Y_{\ell m}(\theta, \phi)$ angular functions are eigenfunctions of L_{z}. Are any of the chemist's wavefunctions eigenfunctions of L_{z} ? (If so list them.) In performing the separation of variables to produce the radial Schrödinger's equation, we needed eigenfunctions of L^{2}. Are any of the chemist's wavefunctions not eigenfunctions of L^{2} ? (If so list them.)
2. The following state is a normalized eigenfunction of $\vec{J}^{2}, J_{z}, \vec{L}^{2}$, and \vec{S}^{2}, where $\vec{J}=\vec{L}+\vec{S}$.

$$
\sqrt{\frac{3}{5}} Y_{21} \chi_{-}-\sqrt{\frac{2}{5}} Y_{20} \chi_{+}
$$

Show directly that this is an eigenfunction of \vec{J}^{2} and find the eigenvalue. What are the eigenvalues of J_{z}, \vec{L}^{2}, and \vec{S}^{2} ?
3. In the H -atom a state (wavefunction) is typically denoted: $|n \ell m\rangle$. What do the integers n, ℓ, and m represent? (That is, connect these integers with Newtonian quantities discussed in PHYS 339/191.) What is the range of possible values for these integers? List (in approximate order of energy from ground state up) the (n, ℓ, m) values that represent the ten lowest energy states. Many of these states have the same energy in the simple Bohr picture. In your list, circle those groups of states that Bohr would call degenerate. The Bohr states are typically labeled with a number and a letter, e.g., $3 p$ as in problem 6 . Properly so label each circled set of sets in your list.
4. Show $\left[L_{x}, p_{y}\right]=i \hbar p_{z}$.
5. Consider the following wave function for two (free, noninteracting, identical, mass m) particles in one dimension (x_{1} refers to particle 1 and x_{2} refers to 2).

$$
\psi\left(x_{1}, x_{2}\right)=\exp \left(i 5\left(x_{1}+x_{2}\right)\right) \sin \left(3\left(x_{1}-x_{2}\right)\right)
$$

By direct calculation, show that this is a solution to the time independent Schrödinger's equation: $H \psi=E \psi$, where H is the free particle Hamiltonian:

$$
H=\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x_{2}^{2}}
$$

Is this a possible state if the particles are electrons in the same spin state (e.g., $\uparrow \uparrow$)? WHY?
6. The normalized wavefunction for a H -atom electron in a $3 p$ state is:

$$
\psi=\frac{\left(4-\frac{2}{3} r^{\prime}\right) r^{\prime} e^{-r^{\prime} / 3} \cos \theta}{27 \sqrt{2 \pi} a_{0}^{3 / 2}}
$$

where $r^{\prime}=r / a_{0}$ and a_{0} is the Bohr radius. Write down the integral that would be required to find the expectation value of z^{2} (i.e., $\langle\psi| z^{2}|\psi\rangle$) for this $3 p \mathrm{H}$-atom state. (Include full details-like range of integration - but do not bother to actually evaluate the integral.)
7. Consider the spin $\frac{1}{2}$ operators:

Operator		Eigen		Eigen	
vector	value	vector	value		
$S_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\binom{1}{1}$				
$S_{y}=\frac{\hbar}{2}\left(\begin{array}{rr}0 & -i \\ i & 0\end{array}\right)$	$\binom{1}{i}$		$\binom{i}{1}$		
$S_{z}=\frac{\hbar}{2}\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$	$\binom{1}{0}$	$+\frac{\hbar}{2}$	$\binom{0}{1}$	$-\frac{\hbar}{2}$	

(a) Fill in the five missing entries in the above table: one new eigenvector and four eigenvalues.
(b) Consider the state given by the column vector: $\binom{5 i+1}{3 i-1}$.
i. Normalize this state; normalize the S_{y} eigenvectors.
ii. If S_{z} is measured, what results will occur? What is the probability of each result?
iii. If S_{y} is measured, what results will occur? What is the probability of each result?
(c) In class, three different schemes have been use to denote the S_{z} eigenvectors, with notations like $|s m\rangle, \chi_{+}$, and \uparrow. Report the three notations that apply to the eigenvector $\binom{0}{1}$ shown above.

