
Consider the Quantum Mechanics of motion in a 1-d ‘wine bottle bottom’ potential
V (x) = x2(x2−1) as shown below with the corresponding stack of energy levels sorted
by parity.
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The Hamiltonian for this system

H = − h̄2

2m
∂2
x
+ x2(x2 − 1)

depends on a free parameter which we have chosen: 2m/h̄2 = 2628.8256429 ≡ α2.
(This results in the 20th state having eigenenergy E = .2.) To appreciate the wave-
functions of this Hamiltonian, page through the plots in the file 2well_all_psi.pdf.
Note now that for E < 0 the even/odd states are nearly degenerate, where as for
E > 0 the even/odd states interleave as usual.

We aim to estimate the eigenenergies of this potential using the WKB approximation:
plot the WKB integral as a function of E and pick out the spots where the result
equals π(n− 1

2
).

An interesting feature of this potential is that the classical turning points differ signif-
icantly between case (A) with E > 0 and symmetrical turning points ±a and case (B)
with E < 0 and asymmetrical turning points: either in the x > 0 well (b < x < a)
or the x < 0 well (−a < x < −b) . Quantum mechanics tells us that because of
tunneling a particle will not be located in just one well; instead it will end up equally
distributed in both wells. The E < 0 states (in fact all states) will be either even or
odd (the parity operator commutes with this symmetric potential) but |ψ|2 will be
the same in the two wells. Again, you should look through 2well_all_psi.pdf to
appreciate this result.

A distracting feature of this problem is that Mathematica balks at calculating the
WKB integral. An old integral table by Gradshteyn & Ryzhik will provide needed
answers.

Because the potential is a special quartic (a quadratic in x2) its easy to find the
turning points:



alpha=Sqrt[2628.8256429]

Solve[x^2(x^2-1)==e,x]

a = x /. Last[%]

b = x /. %%[[2]]

Note: b will be complex if E > 0.

The required WKB integral is:
∫

α
√

E − x2(x2 − 1) dx

where in case (A) the turning points are symmetric: x = ±a; in case (B)—for the
positive x well—the turning points are b and a.

Mathematica has problems doing the WKB integral directly:

Integrate[Sqrt[e-x^2(x^2-1)],{x,-a,a}]

Mathematica thinks for about 5 minutes but comes up with no answer. Gradshteyn &
Ryzhik provides a result for the following equivalent integral (equivalent in the sense
that we have a general quadratic in x2 under a radical) and Mathematica can copy
this result (it will take a few minutes):

Integrate[Sqrt[(c^2+x^2)(aa^2-x^2)],{x,-aa,aa}]

result=Simplify[%,{c>0,aa>0}]

Out[8]=(2*c*((aa - c)*(aa + c)*EllipticE[-(aa^2/c^2)] +

(aa^2 + c^2)*EllipticK[-(aa^2/c^2)]))/3

The quartic under the root for the integral Mathematica can do is in factored form
whereas our WKB integral is not; we have found the root a above, we need only
express c in terms of E. If we compare the two:

(c2 + x2)(a2 − x2) = c2a2 + (a2 − c2)x2 − x4 = E − x2(x2 − 1) = E + x2 − x4

we conclude c =
√
E/a.

wkbA[e_]=alpha * result /. {c->Sqrt[e]/a,aa->a}

Plot[wkbA[e]/Pi,{e,0,.25}]

Now when the WKB integral equals π(n − 1

2
) we have a WKB solution. You can

graphically find those spots from the graph of the integral as a function of e. For
example n − 1

2
= 19.5; looking on the graph what E produces 19.5, I conclude near

E = .2. I can then use Mathematica to improve that estimate:

FindRoot[wkbA[e]/Pi==19.5,{e,.2}]

Out[18]= {e -> 0.199938}



Problem: Graphically estimate the energy e for all n between 12 and 22 and then
use FindRoot to produce accurate values. Put the results in a nice table.

For E < 0 the problem becomes more interesting as then we have two allowed re-
gions separated by a disallowed region. . . the wavefunction will tunnel through that
disallowed region and cover each equally. Since the problem is reflection symmetric
the exact solutions will be either even or odd. Again, take a look at a low energy
even/odd pair in 2well_all_psi.pdf. So if we apply WKB to E < 0 it will only
know about one well, and it will end up reporting the energy of what in fact turns
out to be a pair of even/odd solutions. An additional irritant is that the Mathematica

result for the factored WKB integral:

Integrate[Sqrt[(x^2-b^2)(a^2-x^2)],{x,b,a}]

includes and explicit I (i.e., looks complex, but is of course real). Gradshteyn &
Ryzhik come to our rescue and report that this integral is:

wkbB[e_]=alpha*(a*((b^2+a^2)*EllipticE[(a^2-b^2)/a^2]-

2*b^2*EllipticK[(a^2-b^2)/a^2]))/3

Plot[wkbB[e]/Pi,{e,-.25,0}]

Each of the five WKB energies you can determine from wkbB[e]/Pi correspond to a
even/odd nearly degenerate pair; thus ten total eigenstates. Note: the 11th eigenstate
is too close to the boundary; you will find it neither in wkbB[e]/Pi (where the E = 0
value is about 5.4) or wkbA[e]/Pi (where the E = 0 value is about 10.9). Note 2:
Griffiths 8.15 aims to improve these guesses, by using WKB to estimate the energy
difference between the pair of nearly degenerate even & odd wavefunctions.

Problem: Graphically estimate the energy e for n between 1 and 5 and then use
FindRoot to produce accurate values. Put the results in a nice table, noting that
because they represent an even/odd nearly degenerate pair they actually constitute
10 eigenenergies. For the record the exact eigenenergy of the n = 11 state is −.00176.

FYI: These WKB energies deviate on average from the exact values by less than
.0003!


