

1. As described in problem 7-23, the above circuit (called a Wheatstone bridge), can be used to determine an unknown resistance (say, R_{5}) in terms of known resistances (R_{1}, R_{2}, R_{4}). In brief one of the three known resistors is a variable (adjustable) resistor whose value is adjusted until $I_{3}=0$. If $I_{3}=0$ then $V_{A}=V_{B}$ and hence $R_{4} / R_{2}=R_{5} / R_{1}$ allowing R_{5} to be calculated in terms of the knowns. 'Null' methods like this can be extremely sensitive which is explored in problems 7-23 \& 7-24 (but neither of those are assigned). Your assignment is just to write down the equations that would be needed to solve this circuit.
(a) Using the usual form of Kirchhoff's Rules, write down three linear equations that are required to solve for the three currents I_{1}, I_{2}, I_{3}. Express the results as a matrix equation:

$$
\left[\begin{array}{lll}
B_{11} & B_{12} & B_{13} \\
B_{21} & B_{22} & B_{23} \\
B_{31} & B_{32} & B_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\left[\begin{array}{c}
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right]
$$

I won't again write out such details; instead I'll write the above as $\stackrel{\leftrightarrow}{B} \cdot \vec{I}=\vec{A}$ where \leftrightarrow denotes a matrix and an arrow denotes a vector or even more simply: $B \cdot I=A$ where it's up to you to figure out the quantites involved. (Clearly these vectors are unrelated to $x y z$ and 'tensors' rather vectors in the sense of a vector space.) Symbolically the solution to such a set of linear equations is: $I=B^{-1} \cdot A$.
(b) Using the nodal form of Kirchhoff's Rules, write down two linear equations that are required to solve for the two voltages V_{A}, V_{B}. Express the results as a matrix equation.
2. On the class web site the image xkcd_circuuit_full.png shows a circuit with many in-jokes by Randall Munroe of the geeky web site xkcd.com. (You can find a subset of his comics that I've enjoyed at www.physics.csbsju.edu/xkcd.) A detail in this circuit: xkcd_circuuit.png shows a challenge circuit for students of Electrical Engineering 201. Solve this challenge circuit using the nodal method and the node labeling on xkcd_circuuitB.png; assume a voltage V on the top and ground $(0 \mathrm{~V})$ at the bottom. Use Matheamtica to solve the resulting linear equations. A single number summary of the result is the equivalent resistance (V / I) of the circuit; report it! Remark: careful inspection will show node 9 has 8 connections.

