20. Express the following complex numbers in $r \angle \theta$ format (I bet your calculator can do this automatically):
(a) $\frac{1}{1+i}$
(b) $\frac{3+i}{1+3 i}$
(c) $25 e^{2 i}$
(d) $(1 /(1+i))^{*}$
(e) $\left|\frac{1}{(1+i)}\right|$
21. Find the following in (a, b) format (I bet your calculator can do this automatically):
(a) $\frac{3 i-7}{i+4}$
(b) $(.64+.77 i)^{4}$
(c) $\sqrt{3+4 i}$
(d) $25 e^{2 i}$
(e) $\ln (-1)$

22. LRC Circuit

The circuit shown right includes two identical resistors (resistance R), an inductor (L), and a capacitor (C). Find the equivalent impedance, and show that if $R=\sqrt{L / C}$. the equivalent impedance does not depend on ω !

23. Fluorescent Lamp: run

In England (where the "mains" supply is 240 V at 50 Hz) fluorescent tubes are powered with the circuit shown. The inductor L ("ballast") is used as part of a voltage divider to supply the tube with less than 240 V . Consider the case of the T12 24" 20 Watt tubes used in our halls. When lit, these tubes draw 0.37 A . Assuming the tube acts just like a resistor, what is the voltage across the tube? What value of L would provide this current and voltage in England?
24. Fluorescent Lamp: LRC start?

In order to ignite the arc inside the fluorescent tube the filaments are heated (by sending a current through them) and then a high voltage pulse is applied. While not the usual method used, an $L R C$ resonant circuit could be used to produce both a large filament current and a voltage well above 240 V , and thus facilitate the ignition. (The unlit tube acts is an insulator; the filaments are the R; use the value found in the previous problem for L.) If run exactly at resonance, what value of C is required? If the total filament resistance is 40Ω how much current will flow? Find the voltage across the tube. Exact resonance would actually produce too much current. What value of C is required if the current is to be limited to 0.5 A ?
25. Fluorescent Lamp: power factor

As in the previous problems, a 20 Watt fluorescent tube, when lit, will draw 0.37 A from the assumed 240 V supply. The power company will then bill you for $0.37 \mathrm{~A} \times 240 \mathrm{~V}=90$ "Watts" whereas you are only using 20 W . Oddly enough you can reduce the current drawn from the receptacle by adding a capacitor in parallel to the tube+ballast. This "power factor correcting" capacitor results in a total impedance ($\mathbf{Z}_{\text {total }}$) that is real (i.e., the current drawn from the receptacle is in phase with the voltage). Show that the required C is given by:

$$
\omega R C=\frac{1}{\frac{R}{\omega L}+\frac{\omega L}{R}}
$$

where R is the effective resistance of the tube. Calculate the value of C needed in England. Note: some algebraic tricks will give you a fast solution, however the tedious, but direct, approach of finding C to maximize $\left|\mathbf{Z}_{\text {total }}\right|$ (and hence minimize the current) will also produce the correct answer.

