Remarks: In dealing with spherical coordinates in general and with Legendre polynomials in particular it is convenient to make the substitution $c=\cos \theta$. For example, this allows use of the following simplification of the orthogonality relationship:

$$
\begin{equation*}
\int_{0}^{\pi} P_{n}(\cos \theta) P_{m}(\cos \theta) \sin \theta d \theta=\frac{2}{2 n+1} \delta_{n m} \Longrightarrow \int_{-1}^{+1} P_{n}(c) P_{m}(c) d c=\frac{2}{2 n+1} \delta_{n m} \tag{1}
\end{equation*}
$$

Since $\theta=\pi / 2$ (the equator) corresponds to $c=0$, symmetries that correspond to reflection in the equatorial plane correspond to $c \rightarrow-c$ symmetry. So the statement

$$
\begin{equation*}
P_{n}(-c)=(-1)^{n} P_{n}(c) \tag{2}
\end{equation*}
$$

reports that the n-even P_{n} have even reflection symmetry whereas the n-odd P_{n} have odd reflection symmetry. Finally note that since $\theta=0$ and π corresponds to $c= \pm 1$, the statements $P_{n}(1)=1$ and $P_{n}(-1)=(-1)^{n}$ report the behavior of P_{n} along the positive and negative z axes respectively.

As shown in the text, we can write an arbitrary azimuthally-symmetric solution to Laplace's equation in spherical coordinates as:

$$
\begin{equation*}
\phi(r, \theta)=\sum_{n=0}^{\infty}\left(A_{n} r^{n}+\frac{C_{n}}{r^{n+1}}\right) P_{n}(\cos \theta) \tag{3}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\phi(r, c)=\sum_{n=0}^{\infty}\left(A_{n} r^{n}+\frac{C_{n}}{r^{n+1}}\right) P_{n}(c) \tag{4}
\end{equation*}
$$

Example 1: Consider the problem of finding ϕ inside a sphere (of radius R) where the voltage on the surface of the sphere has been given as a known function $V(\theta)$ (which we will use in the form $V(c))$. First, since nothing singular is happening at the origin, $C_{n}=0$ for all n. The A_{n} are determined by the requirement that ϕ and V agree if $r=R$:

$$
\begin{equation*}
V(c)=\phi(R, c)=\sum_{n=0}^{\infty} A_{n} R^{n} P_{n}(c) \tag{5}
\end{equation*}
$$

If we multiply both sides by $P_{m}(c)$ and integrate c from -1 to 1 , we can calculate the lhs (which of course depends on m) and the rhs simplifies because of orthogonality:

$$
\begin{equation*}
\int_{-1}^{+1} V(c) P_{m}(c) d c=\sum_{n=0}^{\infty} A_{n} R^{n} \int_{-1}^{+1} P_{n}(c) P_{m}(c) d c=A_{m} R^{m} \frac{2}{2 m+1} \tag{6}
\end{equation*}
$$

so

$$
\begin{equation*}
A_{m}=\frac{\int_{-1}^{+1} V(c) P_{m}(c) d c}{R^{m} \frac{2}{2 m+1}} \tag{7}
\end{equation*}
$$

For example, if the applied voltage is $+V$ in the northern hemisphere and $-V$ in the southern hemisphere (an odd function of c), we can immediately conclude that for n even $A_{n}=0$, and for n odd Mathematica says:

$$
\begin{equation*}
A_{n} R^{n} \frac{2}{2 n+1}=2 V \int_{0}^{+1} P_{n}(c) d c=\frac{V \sqrt{\pi}}{\Gamma(1-n / 2) \Gamma((3+n) / 2)} \tag{8}
\end{equation*}
$$

```
In[1]:= A=2 Integrate[LegendreP[n,x],{x,0,1}]
    Sqrt[Pi]
Out [1]
```



```
    2 2
```

Mathematica has provided a complex answer ${ }^{1}$ for a result that is just a simple rational number. For your enjoyment, I'll produce a form I can better understand, but in the end we'll let Mathematica use its own result.

I'll begin by reporting some properties of the Gamma function:

$$
\begin{align*}
\Gamma(x+1) & =x \Gamma(x) \tag{9}\\
\Gamma(n+1) & =n!\quad \text { for } n \text { a positive integer } \tag{10}\\
\Gamma(1-x) & =\frac{\pi}{\sin (\pi x) \Gamma(x)} \tag{11}\\
\Gamma(1 / 2) & =\sqrt{\pi} \tag{12}\\
(x)_{n} & =x(x+1)(x+2) \cdots(x+n-1)=\frac{\Gamma(x+n)}{\Gamma(x)} \tag{13}
\end{align*}
$$

The last formula is for the shifted factorial ${ }^{2}$ or Pochhammer Symbol defined in class.
Note that n is odd which we will write as $n=2 m-1$, so $m=\{1,2,3, \ldots\}$ corresponds to $n=\{1,3,5, \ldots\}$.

$$
\begin{align*}
\frac{\sqrt{\pi}}{\Gamma(1-n / 2) \Gamma((3+n) / 2)} & =\frac{\sin (\pi n / 2) \Gamma(n / 2)}{\sqrt{\pi} \Gamma((3+n) / 2)}=\frac{(-1)^{m-1} \Gamma(m-1 / 2)}{\Gamma(1 / 2) \Gamma(m+1)}=\frac{(-1)^{m} 2 \Gamma(m-1 / 2)}{\Gamma(-1 / 2)) \Gamma(m+1)} \\
& =(-1)^{m} \frac{\left(-\frac{1}{2}\right)_{m} 2}{m!} \tag{14}
\end{align*}
$$

i.e., $\left\{1,-\frac{1}{4}, \frac{1}{8},-\frac{5}{64}, \frac{7}{128},-\frac{21}{512}, \ldots\right\}$

Back to Mathematica:

```
f[r_, c_]=Sum[A(2 n +1)/2 r^n LegendreP[n, c],{n,1,21,2}]
ContourPlot[f[Sqrt[x^2+z^2],z/Sqrt[x^2+z^2]],{x,0,.9},{z,-.9,.9},
Contours -> {-.9,-.8,-.7,-.6,-. 5,-.4,-.3,-.2,-. 1,0,.1,.2,.3,.4,.5,.6,.7,.8,.9},
ContourShading->False,RegionFunction->Function[{x, z, q},x^2+z^2<1 ],
AspectRatio->Automatic]
```

Example 2: Consider the problem of finding ϕ inside and outside a sphere (of radius R) where the surface charge density on the surface of the sphere has been given as a known

[^0]function $\sigma(\theta)$ (which we will use in the form $\sigma(c)$). First, since nothing singular is happening at the origin, for the inside solution $C_{n}=0$ for all n. Since the potential must approach zero as $r \rightarrow \infty$, for the outside solution $A_{n}=0$ for all n. Thus:
\[

\phi(r, \theta)= $$
\begin{cases}\sum_{n=0}^{\infty} A_{n} r^{n} P_{n}(c) & \text { for } r<R \tag{15}\\ \sum_{n=0}^{\infty} \frac{C_{n}}{r^{n+1}} P_{n}(c) & \text { for } r>R\end{cases}
$$
\]

Continuity of ϕ at $r=R$ produces the requirement:

$$
\begin{equation*}
A_{n} R^{n}=\frac{C_{n}}{R^{n+1}} \tag{16}
\end{equation*}
$$

The surface charge density can be related to the discontinuity in the radial component of the electric field:

$$
\begin{align*}
\sigma(\theta) & =\epsilon_{0}\left(\left.\partial_{r} \phi\right|_{r=R^{-}}-\left.\partial_{r} \phi\right|_{r=R^{+}}\right) \tag{17}\\
& =\epsilon_{0} \sum_{n=0}^{\infty}\left(n A_{n} R^{n-1}+(n+1) C_{n} R^{-(n+2)}\right) P_{n}(c) \tag{18}\\
& =\epsilon_{0} \sum_{n=0}^{\infty}(2 n+1) A_{n} R^{n-1} P_{n}(c) \tag{19}
\end{align*}
$$

The usual 'Fourier Trick' (multiply both sides by $P_{m}(c)$ and integrate from -1 to 1 collapsing the sum to a single term) allows A_{m} to be calculated:

$$
\begin{equation*}
\int_{-1}^{+1} \sigma(c) P_{m}(c) d c=\epsilon_{0}(2 m+1) A_{m} R^{m-1} \frac{2}{2 m+1}=\epsilon_{0} 2 A_{m} R^{m-1} \tag{21}
\end{equation*}
$$

Example 3: Often you can calculate ϕ along the z axis, but the off-axis calculation is difficult or impossible. However you can expand $\phi(z)$ to produce the full $\phi(r, c)$ by a trick. Taylor expand $\phi(z)$ to obtain a power series expansion:

$$
\begin{equation*}
\phi(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \tag{22}
\end{equation*}
$$

This formula must agree with the Legendre expansion evaluated on the z axis:

$$
\begin{equation*}
\phi(r, c)=\sum_{n=0}^{\infty} A_{n} r^{n} P_{n}(c)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad \text { on the } z \text { axis } \tag{23}
\end{equation*}
$$

The fact that on axis $c= \pm 1$ and $P_{n}(\pm 1)=(\pm 1)^{n}$ allows easy comparison between these two series. Agreement requires A_{n} (useful for ϕ off-axis) equals a_{n} (determined only knowing ϕ on-axis).

For example, the potential on the z-axis for a ring charge (radius R, total charge Q) is clearly

$$
\begin{equation*}
\phi(z)=\frac{Q}{4 \pi \epsilon_{0}}\left[z^{2}+R^{2}\right]^{-1 / 2}=\frac{Q}{4 \pi \epsilon_{0} R}\left[1+(z / R)^{2}\right]^{-1 / 2}=\frac{Q}{4 \pi \epsilon_{0}} \sum \frac{\left(\frac{1}{2}\right)_{n}\left(-z^{2} / R^{2}\right)^{n}}{n!} \tag{24}
\end{equation*}
$$

we can conclude

$$
A_{n}= \begin{cases}\frac{(-1)^{n / 2} Q\left(\frac{1}{2}\right)_{n / 2}}{4 \pi \epsilon_{0} R^{n}(n / 2)!} & \text { for } n \text { even } \tag{25}\\ 0 & \text { for } n \text { odd }\end{cases}
$$

$f\left[r_{-}, c_{-}\right]=\operatorname{Sum}\left[(-1)^{\wedge}(n / 2) \operatorname{Pochhammer}[1 / 2, n / 2] r n \operatorname{LegendreP[n,c]/(n/2)!,\{ n,0,20,2\}]}\right.$
 ContourShading->False, RegionFunction->Function[\{x, z, q\}, $\left.x^{\wedge} 2+z^{\wedge} 2<.8\right]$, PlotRangePadding->None, AspectRatio->Automatic]

Figure 1: Isopotential contours for Example 1 (left) and Example 3 (right)

Homework 1: A physicist aims to subject a sample to a pure quadrupole field ($n=2$) inside a spherical cavity. The plan is to charge the top and bottom caps of the sphere to 1 V and the remaining band around the equator to a potential of -1 V . Because the applied voltage $V(\theta)$ is symmetric, terms $A_{n}=0$ for n odd. The first important term will then be quadrupole A_{2} (A_{0} corresponds to a constant voltage and so makes no electric field). It would be nice (but not possible) to make A_{2} the only non-zero term. The best we can do is make $A_{4}=0$. Problem: Find the band angle, θ_{b} that makes $A_{4}=0$. Find A_{6} in this circumstance. Find the values: A_{0}, A_{2} and A_{6}. Put the pieces together to express the potential inside the sphere. Have Mathematica produce a contour plot of that voltage.

Hint:

$$
\begin{equation*}
A_{4} \propto \int_{-1}^{+1} V(c) P_{4}(c) d c=2\left\{-\int_{0}^{c_{b}} P_{4}(c) d c+\int_{c_{b}}^{1} P_{4}(c) d c\right\} \tag{26}
\end{equation*}
$$

Use Mathematica (or a root-finding calculator) to find the value c_{b} to make this quality zero.

Homework 2: In a region where there are no currents flowing, we can define a magnetic potential that is exactly analogous to the electric potential:

$$
\begin{equation*}
\mathbf{B}=-\boldsymbol{\nabla} \phi \quad \text { where: } \nabla^{2} \phi=0 \tag{27}
\end{equation*}
$$

For a pair of Helmholtz coils (two identical coaxial coils with centers separated by R; recall Phys 200 labs with them), the magnetic potential along the axis is given by:

$$
\begin{equation*}
\phi(z)=\frac{5 \sqrt{5} R}{16}\left[\frac{z-R / 2}{\sqrt{R^{2}+(z-R / 2)^{2}}}+\frac{z+R / 2}{\sqrt{R^{2}+(z+R / 2)^{2}}}\right] \tag{28}
\end{equation*}
$$

Recall from the 200 lab that the spacing of the coils is designed to produce a particularly uniform field between the coils, and if you reverse the current in one coil you produce a diverging \mathbf{B} with $\mathbf{B}=0$ at the center (in short a quadrupole field). Use Mathematica to series expand ϕ around the origin. Use that series to produce $\phi(r, \cos \theta)$ in a region near the origin. Make a contour plot of ϕ to confirm that it is nearly uniform.

If you have reversed coils a distance b above and below the origin, ϕ is given by:

$$
\begin{equation*}
\phi(z)=\left[\frac{z-b}{\sqrt{R^{2}+(z-b)^{2}}}-\frac{z+b}{\sqrt{R^{2}+(z+b)^{2}}}\right] \tag{29}
\end{equation*}
$$

What value of b will produce a particularly pure quadrupole field? Make a contour plot of ϕ to confirm that it is nearly quadrupole.

Homework 3: Consider a problem analogous to Helmholtz coils but in electrostatics with charged rings. You have a ring (radius R, centered on the z axis, in a plane parallel to the $x y$ plane) with charge $+Q$ at distance b above the origin, and a similar ring with center at $z=-b$ with charge $-Q$. Find b that will produce the most uniform possible \mathbf{E} field in the vicinity of the origin. Explain why the voltage on the z axis is given by:

$$
\begin{equation*}
\phi(z)=\frac{Q}{4 \pi \epsilon_{0}}\left[\frac{1}{\sqrt{R^{2}+(z-b)^{2}}}-\frac{1}{\sqrt{R^{2}+(z+b)^{2}}}\right] \tag{30}
\end{equation*}
$$

Expand this result in a power series in z. The term linear in z corresponds to $r P_{1}(c)$ (why?) and further terms produce a non-uniform \mathbf{E}. Determine the value of b which makes as many of these further terms zero. Make a contour plot of $\phi(r, \cos \theta)$ (for $R=1$) to confirm that it is nearly uniform.

Example 4: In the case of cylindrical coordinates where $\phi(r, \theta)$ (and not z), we have:

$$
\begin{equation*}
\phi(r, \theta)=A_{0}+C_{0} \ln (r)+\sum_{n=1}^{\infty}\left(A_{n} r^{n}+C_{n} r^{-n}\right)\left(a_{n} \cos (n \theta)+c_{n} \sin (n \theta)\right) \tag{31}
\end{equation*}
$$

Note that $A_{n}, C_{n}, a_{n}, c_{n}$ are not independent: for example you could multiply both A_{n}, C_{n} by five and divide both a_{n}, c_{n} by five and have exactly the same solution. Most commonly one of the terms in parenthesis is reduced to a single term. As usual we have orthogonality as:

$$
\begin{align*}
\int_{-\pi}^{+\pi} \cos (n \theta) \sin (m \theta) d \theta & =0 \tag{32}\\
\int_{-\pi}^{+\pi} \cos (n \theta) \cos (m \theta) d \theta & =\pi \delta_{m n} \tag{33}\\
\int_{-\pi}^{+\pi} \sin (n \theta) \sin (m \theta) d \theta & =\pi \delta_{m n} \tag{34}
\end{align*}
$$

We seek ϕ outside a cylinder of radius R on which the potential is known to be

$$
\begin{equation*}
V(\theta)=\cos ^{2}(\theta) \tag{35}
\end{equation*}
$$

Since the source extends to infinity, we cannot in general take ϕ at infinity to be zero; thus the meaning of "the potential" on the cylinder is ambiguous; a convenient solution is to define the constant $A_{0}=A_{0}^{\prime}-C_{0} \ln (R)$ (a further benefit is the result makes sense dimensionally).

$$
\begin{equation*}
\phi(r, \theta)=A_{0}^{\prime}+C_{0} \ln (r / R)+\sum_{n=1}^{\infty}\left(A_{n} r^{n}+C_{n} r^{-n}\right)\left(a_{n} \cos (n \theta)+c_{n} \sin (n \theta)\right) \tag{36}
\end{equation*}
$$

Note that in this form the value of C_{0} has absolutely no effect on the value of the voltage at $r=R$; A bit of thought should convince you that C_{0} is determined by the net charge-per-length on the cylinder. (Recall: voltage for a line charge: $\phi=\left(-\lambda / 2 \pi \epsilon_{0}\right) \ln (r)$.) We will take $C_{0}=0$.

Since the $V(\theta)$ is even in $\theta, c_{n}=0$; since the electric field should be regular at infinity $A_{n}=0$. Thus:

$$
\begin{equation*}
\phi(r, \theta)=A_{0}^{\prime}+\sum_{n=1}^{\infty} C_{n} r^{-n} \cos (n \theta) \tag{37}
\end{equation*}
$$

Since $\phi(R, \theta)$ must agree with $V(\theta)$ we have:

$$
\begin{equation*}
\cos ^{2}(\theta)=\phi(R, \theta)=A_{0}^{\prime}+\sum_{n=1}^{\infty} C_{n} R^{-n} \cos (n \theta) \tag{38}
\end{equation*}
$$

The C_{n} could now be determined using the "Fourier Trick", but a faster way is to use a trig identity to immediately write $\cos ^{2}(\theta)$ in terms of $\cos (n \theta)$:

$$
\begin{equation*}
\cos ^{2}(\theta)=\frac{1}{2}+\frac{1}{2} \cos (2 \theta)=A_{0}^{\prime}+\sum_{n=1}^{\infty} C_{n} R^{-n} \cos (n \theta) \tag{39}
\end{equation*}
$$

Simple inspection (rather than integration, but of course integration produces the same result):

$$
\begin{align*}
\frac{1}{2} & =A_{0}^{\prime} \tag{40}\\
0 & =C_{1} R^{-1} \cos (\theta) \tag{41}\\
\frac{1}{2} \cos (2 \theta) & =C_{2} R^{-2} \cos (2 \theta) \tag{42}
\end{align*}
$$

and $C_{n}=0$ for $n>2$. So the final result is:

$$
\begin{equation*}
\phi(r, \theta)=\frac{1}{2}\left[1+\cos (2 \theta)(R / r)^{2}\right] \tag{43}
\end{equation*}
$$

I hope it is immediately clear that this potential solves Laplace's equation, agrees with $V(\theta)$ when $r=R$ and represents a cylinder with a simple quadrupole.

Example 5: Consider an infinite (in the z directions) rectangular gutter with cross-section between $(0,0)$ and (a, b). Three of the sides of the gutter are grounded; the fourth, (a, y) with $y \in(0, b)$ has a specified voltage $V(y)$. Separation of variables yields a general solution:

$$
\begin{equation*}
\phi(x, y)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi y}{b}\right) \frac{\sinh \left(\frac{n \pi x}{b}\right)}{\sinh \left(\frac{n \pi a}{b}\right)} \tag{44}
\end{equation*}
$$

We have orthogonality in the form:

$$
\begin{equation*}
\int_{0}^{b} \sin \left(\frac{n \pi y}{b}\right) \sin \left(\frac{m \pi y}{b}\right) d y=\frac{1}{2} b \delta_{m n} \tag{45}
\end{equation*}
$$

Requiring $\phi(x, y)$ to agree with $V(y)$ when $x=a$ yields:

$$
\begin{equation*}
V(y)=\phi(a, y)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi y}{b}\right) \tag{46}
\end{equation*}
$$

With the "Fourier Trick" yielding:

$$
\begin{equation*}
\int_{0}^{b} V(y) \sin \left(\frac{m \pi y}{b}\right) d y=\frac{1}{2} b A_{m} \tag{47}
\end{equation*}
$$

Consider, for example, the case $V(y)=1$ (constant):

$$
\begin{equation*}
\int_{0}^{b} \sin \left(\frac{m \pi y}{b}\right) d y=\left[\frac{-\cos \left(\frac{m \pi y}{b}\right)}{\frac{m \pi}{b}}\right]_{0}^{b}=\frac{b}{m \pi}\left[1-(-1)^{m}\right] \tag{48}
\end{equation*}
$$

So:

$$
\begin{equation*}
\phi(x, y)=\frac{4}{\pi} \sum_{n \text { odd }} \frac{1}{n} \sin \left(\frac{n \pi y}{b}\right) \frac{\sinh \left(\frac{n \pi x}{b}\right)}{\sinh \left(\frac{n \pi a}{b}\right)} \tag{49}
\end{equation*}
$$

Figure 2: Clockwise from upper left: isopotential contours for Example 5, a slice of Example 5ϕ along $(x, .5)$, a slice of Example 5ϕ along $(1.9, y)$, isopotential contours for Example 4

[^0]: ${ }^{1}$ Part of the reason for this complex formula is that Mathematica is showing that n even produces zero result. However it doesn't really matter if you don't recognize the answer as Mathematica can quickly produce the rational number for any n you want.
 ${ }^{2}$ Note: $(1)_{n}=n$! more generally $(x)_{n}$ is n terms multiplied together, starting with x with successive terms one more than the previous.

