1. An azimuthally symmetric voltage has been placed on the surface of the sphere:

$$
V(\theta)=V_{0} \cos ^{2} \theta
$$

where V_{0} is a given constant. Find the resulting voltage ϕ inside and outside the sphere. This is a rather long problem, so let me give you some initial help. Since the problem is azimuthally symmetric and ϕ must satisfy Laplace's equation, I know:

$$
\begin{aligned}
\phi_{\text {in }}(r, \theta) & =\sum_{n=\mathrm{even}} A_{n} r^{n} P_{n}(\cos \theta) \\
\phi_{\text {out }}(r, \theta) & =\sum_{n=\mathrm{even}} C_{n} r^{-n-1} P_{n}(\cos \theta)
\end{aligned}
$$

where A_{n} and C_{n} are currently undetermined constants, $\phi_{\text {in }}$ gives ϕ for $r<R$, and $\phi_{\text {out }}$ gives ϕ for $r>R$.
(a) Explain why (words!) these particular formulas must hold. I.e., what is the general case and how/why does this problem simplify that general case.
(b) At the boundary (i.e., $r=R$) the following condition must hold:

$$
\phi_{\text {in }}(R, \theta)=\phi_{\text {out }}(R, \theta)=V(\theta)
$$

I conclude from this condition that, for every n,

$$
A_{n} R^{2 n+1}=C_{n}
$$

Explain (words!) the basis for this conclusion. How do we go from one equation (which involves a sum of an infinite number of terms) to an infinite number of equations (one for every n)?
(c) The Mathematica command:

```
Table[Integrate[c^2 LegendreP[n, c],{c,-1,1}],{n,0,10}]
```

Produces the output: $\left\{\frac{2}{3}, 0, \frac{4}{15}, 0,0,0,0,0,0,0,0\right\}$. Use this result to write down the first two non-zero terms (i.e., a couple of non-zero A s and a couple of non-zero $C \mathrm{~s})$ of the formulas for $\phi_{\text {in }}(r, \theta)$ and $\phi_{\text {out }}(r, \theta)$.
2. Consider two conducting coaxial infinite cylindrical shells. The volume between these shells is filled with dielectric (dielectric constant K); the remaining volume is vacuum. The inner cylinder (of radius a) carries a net charge per length of $+\lambda$ spread evenly around its surface. The outer shell (of radius b) carries the opposite net charge per length. (Note: the same charge per length with different surface areas means the σ are the not same.)
(a) Use Gauss' Law to find the electric field in the three regions: (i) $r<a$, (ii) $a<r<b$, and (iii) $b<r$. Remember to report the direction of \mathbf{E} and any symmetry arguments you have used.
(b) Integrate \mathbf{E} to find formulae for electric potential in those three regions (assume that the electric potential is zero at the center of the cylinder and make sure ϕ is continuous across boundaries).

3. A half circle (radius R) is made of a wire with uniform charge per length λ. Find the electric potential (voltage) and electric field vector at the center of the circle. Report what you are using for $\mathbf{r}, \mathbf{r}^{\prime}$ and $d q$. Directly on the figure above right: draw the vector \mathbf{r}^{\prime} for the bit of charge labeled \mathbf{A} and draw the vector $\mathbf{r}-\mathbf{r}^{\prime}$ for the charge labeled \mathbf{B}. Show all steps required to connect the general formulas for ϕ and \mathbf{E} to the integrals you finally evaluate. (The integrals should not be hard to do.)
4. Consider the following three image charge problems:
(a) A point charge q is a distance d from an infinite conducting, grounded plane
(b) A point charge q is a distance d from the center of a conducting, uncharged sphere (radius $R ; d>R$)
(c) A uniform line charge λ is coaxial to and a distance d from the center of an infinite conducting cylinder (radius $R ; d>R$) carrying a net charge per length of $-\lambda$.

For each of these problems draw an appropriate set of image charges. (No proofs required, simply apply the results we proved in class.) In each case, report a formula for the force on the charge. Carefully note in the above the words "grounded" and "uncharged". What is the difference?
5. The middle figure shows a contour graph of the potential (voltage) ϕ near the edge of a pair of parallel conducting plates forming a capacitor. The plates are infinite in the z directions (perpendicular to this page) and infinite in the y^{-}direction (down the page). The plate at $x=1$ has potential +1 ; the plate at $x=-1$ has potential -1 . The 11 contours shown are for $\phi=\{-.99,-.8,-.6, \ldots,+.6,+.8,+.99\}$. The potential ϕ as a function of x is plotted at several different y values: $y=+.5$ (just above the capacitor edge); and $y=-.5$ and $y=-1.5$ (in part, inside the capacitor). Note that inside the capacitor the potential is nearly a linear function of x.
(a) From the ϕ vs. x plots I conclude that the surface charge densities inside the capacitor at $y=-.5$ and $y=-1.5$ are much the same, whereas the surface charge density on the outside surface of the $(x=1)$ plate at $y=-.5$ is larger than surface charge density on the outside surface of the plate at $y=-1.5$. Explain! Hint: think \mathbf{E} !
(b) Directly on the contour plot draw several $\overrightarrow{\mathbf{E}}$-field lines, including lines that go through the points: $(0,-2),(0,0)$, and $(0,2)$. Be sure to include the direction of each $\overrightarrow{\mathbf{E}}$-field line. The electric field at $(0,2)$ is smaller than that at $(0,-2)$. Explain how the contour plot displays this fact.
(c) The bottom figure represents a cut through the capacitor plates in the vicinity of its top. Directly on this diagram, show the direction of the electric field at the points: $(-1.01,-1),(-.99,-1)$, $(1.01,-1)$ and $(.99,-1)$ (i.e., slightly to the right and left of each plate at $y=-1$). Using little + and - signs show how the electric charge is distributed in/on the plates.

