1. By direct integration of current sources, we have shown (Biot-Savart Law):
(a) For an infinitely long cylindrical shell (radius R) carrying a total current I parallel to the cylinder's axis: $\mathbf{B}=0$ inside and $\mathbf{B}=\mu_{0} I \hat{\boldsymbol{\phi}} / 2 \pi r$ outside.
(b) For an infinitely long solenoid (radius R) carrying surface current $\mathbf{j}=N I \hat{\boldsymbol{\phi}}$ around the circumference: $\mathbf{B}=0$ outside and $\mathbf{B}=\mu_{0} N I \hat{\boldsymbol{z}}$ inside.
(c) For the infinite $z=0$ plane with a uniform surface current $\mathbf{j}=K \hat{\boldsymbol{y}}, B_{x}=\mu_{o} K / 2$ for $z>0$ and $B_{x}=-\mu_{0} K / 2$ for $z<0$

For each of the above provide an amperian loop argument that reproduces these correct results.
2. For a circular current loop (radius R) sitting in the $x y$ plane with center at the origin, we have found \mathbf{B} on the z-axis to be:

$$
B_{z}=\frac{\mu_{0} I R^{2}}{2{\sqrt{z^{2}+R^{2}}}^{3}}
$$

Consider the 'loop' that travels from $z=-\infty$ to $z=+\infty$ along the z-axis and then loops around at $r=\infty$ where $B \propto r^{-3}$ so even over a half-circumference of πr, the return loop integral is 'vanishingly small'. This loop encloses the current loop, so Ampere promises:

$$
\int_{-\infty}^{+\infty} B_{z} d z=\mu_{0} I
$$

Show this.
3. For each of the following vector potentials \mathbf{A}, calculate the corresponding \mathbf{B} and additionally confirm $\boldsymbol{\nabla} \cdot \mathbf{A}=0$.
(a) $\mathbf{A}=B x \hat{\mathbf{j}}$
(b) $\mathbf{A}=\frac{1}{2} \hat{\mathbf{k}} \times \mathbf{r}$ (in cylindrical coordinates this is $A_{\phi}=r / 2$ (explain why!) or use rectangular)
(c) $\mathbf{A}=-\frac{\mu_{0} I \ln (r)}{2 \pi} \hat{\mathbf{k}}$ (cylindrical coordinates)
(d) Note that the below \mathbf{A} (in cylindrical coordinates) is continuous

$$
\mathbf{A}= \begin{cases}\frac{\mu_{0} N I r}{2} \hat{\boldsymbol{\phi}} & \text { for: } r<R \\ \frac{\mu_{0} N I R^{2}}{2 r} \hat{\boldsymbol{\phi}} & \text { for: } r>R\end{cases}
$$

(e) $\quad \mathbf{A}=\frac{\mu_{0}}{4 \pi} \frac{m \mathbf{k} \times \mathbf{r}}{r^{3}}$

In spherical coordinates this is $A_{\phi}=\mu_{0} m \sin \theta /\left(4 \pi r^{2}\right)$.
4. Find the sold angle subtended by the Moon as seen from Earth. Prove/find the general formula for the the solid angle subtended by a sphere as a function of the distance from the center of that sphere. (Think about Neil Armstrong traveling to and landing on the Moon.)

