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Our textbook, and most physics textbooks®, dis-
cusses only “holonomic constraints” which es-
sentially are constraints where the physical co-
ordinates can be expressed as functions of the
generalized coordinates. For example if con-
strained to move in a circle of radius R on a

plane:
x = Rcosf (1)
y = Rsinf (2)
z =0 (3)

so we can eliminate (x,y, z) in favor of the gen-
eralized coordinate . However a disk rolling
on a plane can ‘drive’ all over the surface with
no fixed relation between location of the con-
tact point P and the current orientation of the
disk. These nonholonomic constraints can fit
into Lagrange’s formulation, but undergraduate
physics sees better education targets elsewhere.
So in what follows we’ll avoid overwhelmingly complete new techniques in favor of using
available techniques and approximations to investigate the motion of rolling objects— but
this ‘simple’ (no new techniques) approach can turn out to be a real mess.

Figure 1: Coordinate frame for rolling disk.
Axis 3 is in the direction of the disk’s axle;
1 is always parallel to the plane and in the
trailing direction if ¥ > 0; 2 points away
from the contact point P.

We begin with a rolling disk (radius R) whose orientation is described by Euler angles
(¢,0,1). Because a disk is rotationally symmetric, we can avoid a transformation all the
way to the body-fixed frame and instead use a frame in which the disk is spinning (at ¢)7
this is the coordinate frame just before the step to the final ‘body-fixed’ frame. The direction
3 is the ‘axle’ of the disk; 1 is parallel to the plane and, in this simple case, 2 points directly
away from the contact point P. While I will refer to the object as a ‘disk’ I mean that to
include other symmetric objects, e.g., a hoop. Note that since 2I; = I3 for plane symmetric
figures, different I can be parametrized by the fraction in front of mR?: k = % for a hoop;
k= i for a disk. Again, while the disk is spinning in this frame, the moment of inertial I is
constant in this frame:
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To find the equations of motion, note that dL/dt about the CM must equal the torque, T,
calculated about the CM. We define the vector CP = rp = —Rey and let F be the contact
force at P so the torque is rp X F. The calculation of dL/dt in the 123 frame must account
for the rotation, €2, of that frame:

L
a +OQxL=rpxF (5)
dt 123

1Symon: “Nonholonomic constraints occur in some problems in which bodies roll without slipping, but
they are not of great importance in physics. We shall therefore restrict attention to holonomic systems.”



We will calculate below L and Q = w — tpe; using Euler angles, but first we need to consider

the motion of the CM:

dVC

W +QXVO):F+mg

mve =m <
123

(6)

By the no-slip rolling condition: vo = —w X rp. Since rp is a constant in 123, we have:

m(—w xXrp+Qxve)=F+mg
Eliminating F gives:
I w4+ QxL=mrpx(—wxrp+Q2xXve—g)
Renaming I < I/m gives:

Il w4+ Ox (T w) = rpXx(—~wXxrp+Q2 X (rpxXw)—g)
Iw+rpx(wxrp) = —Ox(I-w)+rpXx (XX (rpXw)—g)
I-w+ R — R¥ne;, = —Qx (1 -w)+rpx (Rhw —g)

Renaming I < I/R? and g < g/R gives:

Iw4w—wses=—-2x (I -w)—ey xQw—e; cosl g

The coordinate system used is related to a 313 Euler angle set. In our notation:

0 0
Q= [0 |+M;'| O
0 ¢

= (9, bsin, dbcos@)

0 0 0
w = |0 ]+]0|+M|O
(0 0 ¢
= (9, dsin(), ¢ cos(h) + 1/))
Eq. (12) now reads
(IL+1)w —(h(1 + I) + ¢(1 + I3 — 1) cos 0)¢sin — g cos
Il (i)g = 9(¢]3+¢(Ig-[1)€089)
(I3+1) ws @O sin

or using the shorthand I; = k; I3 = 2k we have

(k+1) —(p(2k 4+ 1) + ¢p(k + 1) cos#)¢sinf — g cos b
k g k6(2¢) + ¢ cos B)
(2k +1) wy Pl sin 0

(7)



When you produce a mess like this it is essential that you do some checking: finding physical
situations that you independently know are solutions and checking that they also solve the
differential equations.

Totally static sitting on the ground (# = 0) isn’t an option since we have forced the contact
force to be on an edge.

‘On a knife edge’ (unstable?) 6 = /2, and either straight-line rolling () # 0,6 = 0) or
spinning on a diameter (1) = 0, ¢ # 0)...yes the rhs of Eq. (18) is zero.

The first component of Eq. (18) is substantially

tested by considering a disk where the contact

point P traces a circle of radius p. The torques O
from the contact precess the angular momen-
tum at exactly the same angular rate as CM
moves: ¢. The angular momentum about the
CM comes in two pieces: in the 3 direction
(mostly due to ¢) and in the 2 direction due to T y
the changing orientation of the disk (¢). This

vector has constant magnitude but its horizon-
tal component L, is changing direction. That
change in direction must be due to the torques
(calculated about the CM) produced by the con-
tact forces. Since the CM keeps constant height
(as @ is constant), the vertical component of the
contact force: N = mg. The horizontal contact force must provide the centripetal force to
move the CM in a circle of radius p — Rsin . Noting Eq. (16) see that:

Fc=m@-Rsna)¢?
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Figure 2: A disk moves in a circle (radius
p) at constant #, where the forces/torques
are designed to rotated the CM and precess
L at exactly the same constant rate: ¢

L, = I;(t) + ¢ cos ) cos a + I, ¢ sin O sin (19)
dL/dt is then out of the page with magnitude L L ¢. The net torque (out of the page) is
I' = mgRsina —m(p — Rsin )R cos o (20)

Note that § = o+ 7/2 so sina = —cos ) and cosa = sin ¢ and that given ¢ > 7/2 both of
these quantities are positive. Finally we shall use in one place: w = qu)/ R which is required
by the equality of the path lengths: pp = Ri. (In the second line we make the replacements
I+ I/mR? g+ g/R, and ¢ = pp/R.)

—mgR cosf —m(p+ Rcos 9)¢2Rsin9 = ([3('(/‘1 + ¢ cos 0)sinf — [ ¢ sin 0 cos 9) b

—gcos — () + dpcosf)psinf = <13(¢+q30089) —Ilq‘ﬁcose)q‘ﬁsine
—gcos — (W(1+1I3)+ (1 + I3 — I1)pcos@)psind = 0 (21)
Compare to component 1 of Eq. (17).

Much the same diagram (but with qb =0, w = 0) can describe a disk tipping over. Calculating
gravity’s torque about the contact point, and using the parallel axis theorem for that rotation



axis:

(I, + mR*) & = mgR sina (22)
(I + mR*) &, = —mgR cosf (23)
(Lhi+1)wy = —gcosb (24)

where in the last line we have scaled out mR?. Compare to component 1 of Eq. (17).

Some coin motions ‘on a knife edge’ are familiar because they can be long-lasting (stable):
straight-line rolling at sufficient speed (i.e., § = 7/2, v ‘fast’) and spinning about a diameter
(i.e., 0 = m/2, ¢ ‘fast’). We can check our equations by finding the stability conditions for
these motions.

For straight line rolling we make the following substitutions and assume «, 3, ¢ are so small
that we only need to retain first order terms:

Vo= Yo+ 5 (25)
0 = 7/2+« (26)
¢ = 0+¢ (27)
sinff = cosa=1 (28)
cosf) = —sina=—a«a (29)
Eq. (18) becomes: ' ‘
(k+1)a —o(2k + 1)¢ + ga
ko | = 2k ¢ (30)
(2k+1)p 0
From the second component we conclude ¢ = 2¢pa, which we substitute into the first
component:
(k+1)d=— (2(% 12— g) a (31)
for bounded oscillations of o we must have:
P2 g
_ 2
Yo > 2(2k + 1) (32)
2 gR
YT k) (33)

where in the last line we have returned to usually dimensioned quantities.

For spinning about a diameter we make the following substitutions and assume «, 3, are
so small that we only need to retain first order terms:

o= ¢ (34)
§ = 7/2+a (35)
¢ = do+p (36)
sinff = cosa=1 (37)
cos) = —sina=—a«a (38)



Eq. (18) becomes:

(k+1)a 2k 4 1) — dolk + D)o + g
kG _ 0 (39)
(2k + 1) (¢ — ¢oc) fa0%

From the third component we conclude (2k + 1)3) = 2(k + 1)@pa, which we substitute into
the first component:

(k+1)@z:—((k+1)¢§—g)a (40)
from which we conclude for bounded oscillations of o we must have:
2o Y 41

Others have disagreed?.

The usual end-state (6 — 0) of a spinning coin is striking. The coin’s rotation in the inertial
frame slows even as the contact point P accelerates in its motion about a nearly stationary
CM. In the inertial frame the z component of coin’s spin is ¢ + 1) cosf. Interestingly if
0 =0, vey = (w + ¢ cos 0)eq, so the relationship between CM motion and apparent spin
is mathematically forced in the limit 6 — 0.

If = 0, BEq. (18) reads:

0 —(1)(2k +1) 4 ¢(k + 1) cos8)psinf — g cosf
k ¢sinf = 0 42)
(2k+1) L(¢ + dcosh) 0

From the third component: ¢ + (écos ¢=constant, and, based on our observations, we take
that constant to be zero. From the second component see that ¢ and hence 1) must separately
be constants. Plugging this result into the first component:

0 = —(=(2k+1)+ (k+1))p*cosh) sinf — gcos (43)
0 = k¢’sinf—g (44)

g G
ksing ¢ (45)

SO QS, which is the angular velocity of the point P, diverges as 6§ — 0

Finally we can confirm energy conservation. Dotting w with the lhs of Eq. (17) yields

d T1 1 1 d . 1

so energy conservation requires that w dotted with the rhs of Eq. (17) be —<% (mgRsin ) —
—gcos 00. Lots of algebra, but Mathematica confirms.

The following calculations are for disk: k = i, g=980cm/s*, R=1 cm.

2Qlsson, M.G. (Am. J. Phys 40, 1543 (1972)) asserted that in this situation the horizontal component of
F was zero, and found (bo > 7%. McDonald, A.J. derives both results (arXiv:physics/0008227 2001) without
comment.
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Figure 3: LHS: With 1) just 0.1% above the Eq. (32) minimum for stable straight-line motion,
and an initial deviation a = .1, the disks wobbles above and below § = 7/2. While the CM
path (top plot) can’t be said to be straight, ¢ is generally small, and w3 mostly constant.
RHS: With ¢ at 90% of the Eq. (32) minimum, the path is completely wondering, although
¢ shows a consistent increasing trend resulting in a generally clockwise orbit. Note the deep
6 ‘bows:” the drop in gravitational PE results in a speed up of ws.
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Figure 4: LHS: Starting with exactly the right initial values for circular motion: Eq. (21),
circular motion with 6, é, w constant is achieved. Note the very linear ¢; the disk was started
with the proper ¢y.

RHS: Starting with ¢y = 0 (check the ¢ plot) and leaving everything else unchanged results
in more chaotic motion. Again note deep 6 bows when disk changes direction. With most
gyroscopes, releasing with éo = ( results in nutation, which is generally more quickly damped
then the precession.
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Figure 5: LHS: With ¢ just 10% above the Eq. (41) minimum for stable vertical diameter
spinning and an initial deviation o« = .01, the disks wobbles above and below 6 = 7/2, w3
oscillates in step with # and the CM path is confined to a small circle.

RHS: With ¢ at 90% of the Eq. (41) minimum, the path spirals out from the origin and makes
a big loop before returning. There is a deep # bow during the outward sweep accompanied
by an increase in wy and ¢ (note the slight kink in the ¢ line).
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Figure 6: LHS: Spin-down state with no z rotation, but with vy # 0: ¢ = —625.917,
1 = 625.948, 0 = .01, vop /R = .06. Note that the resulting CM motion would be hard to

detect.

RHS: Spin-down state with vey = 0: ¢ = —626.104, ¢ = 626.073: very similar to the above
numbers. The displayed CM motion is just round-off error.

Rolling 3d Objects

There has recently® been a great deal of
interest in the motion of 3d rings (in con-
tract to 2d hoops). With a 3d object,
as shown in Fig. 7, rp = —Rey; — hes,
however if tipped further to 6 > m/2,
the other rim becomes the contact point
and rp = —Rey + heg. For 0 near /2
(Jo| < tan™'(h/R)), the gravitational
torque on the CM about P will produce
a stable, non-rotating equilibrium of the
coin teetering back and forth. Addition-
ally tipping from one rim to the other is
inconsistent with rolling without slipping
unless w is exclusively in the ez direc-
tion. Our equations of motion will not
accurately describe motions that send 6
through 7/2. We find it convenient to
consider only motions with 6 < /2.

Figure 7: Rolling coins, since they have a thick-
ness 2h, only approximate rolling disks. There
are additional terms in the equations of motion
because rp picks up a component in the direction
of e3. Note: in the RHS diagram e; points out of
the page.

3M. A. Jalali, M. S. Sarebangholi, and M.-R. Alam, Phys. Rev. E 92, 032913 (2015) (arXiv:1412.1852v2

[physics.class-ph])

A. V. Borisov, A. A. Kilin, Y. L. Karavaev; Comments on the paper “Terminal retrograde turn of rolling

rings” (arXiv:1611.02957v1 [physics.class-ph])



Starting from Eq. (10) above:

Iwtrpx (wWxrp) = —Qx(T-w)+rpx (2 (rpxw)—g) (47)
I w+rpw + (Rwp + hug)rp = —Qx (I w) +1p x (R + hl)w —g)  (48)

Renaming I+ I/R? g < g/R, and h < h/R gives:

Iw+ (1+h*)w — (g + has) (e; + hes) =

— QO x (I-w)—(Q+ hQ3) ((e2 + heg) X w) — (cosd — hsinb)ge; (49)

([1+1—|-h2) w1

(I + B we —hws | = | (I, +h?) (g.zgsin_.é’ + Q%COS'HG‘)) — h(¢ + .g.zgcose — ¢ sin 00)

(Li+1+h%)46

(I3 + 1) w3 — hws (Is+1) (¢ + ¢ cosf — dsin ) — h(¢sinf + ¢ cos Hh)

—)((1+ I3) sin @ + hcos ) — gb%s}né’cos@(l + I3 — I} — h?) + hcos 20) — g(cos 6 — hsin )

O(4p1s + ¢((Is — I — h?) cos @ — hsin 6))
$O(sin O + h cos6)

Evidently the 3d equations of motion are much
more complicated than the 2d case. Some
checks are in order.

Much as with the disk, the first component of
Eq. (50) is substantially tested by considering a
ring whose the contact point P traces a circle
of radius p. The choice of § < 7/2 results in
some unexpected signs. In Fig. 8, I assume 1) >
0, so the ring is rolling into the page and, just
as in Fig. 7, the l-axis is out of the page (so
6 > 0) and the 2-axis, perpendicular to both,
points towards the 2 o’clock position. Orbiting
the displayed circle center requires the ring to
turn towards the right, which is ¢ < 0.

The torques from the contact precess the hor-
izontal component of the angular momentum
(L) at exactly the same angular rate as CM
moves: |¢|. Using Eq. (16) and the geometry
displayed in Fig. 8:

L, = I;(t) + dcosf) sinf — I, psinfcos 6 (51)

The net torque (into of the page) is:

Fe=m(p - (RcosB —h sin 6))¢?

mg | P |

Figure 8: A ring moves in a circle (radius
p) at constant . The forces/torques are
designed to rotated the CM and precess
L at exactly the same constant rate: |g).
(For convenience the figure has assumed
Ly > 0 which would not actually be the
case.)

2
1

I' = mg(Rcos® —hsin®) —m(p— (Rcos® — hsind)) ¢> (Rsinf + hcosd)  (52)
— g(cosf — hsinf) — <—¢ — ¢(cos @ — hsin 9)) é (sin 6 + h cos 0) (53)

(50)



where we have used: ¢ = —pd/R. Setting L, |¢| = T’ produces:

— <13(1b + ¢cos @) sinf — I;¢sin O cos 9) b=
g(cos® — hsinf) — (—¢ — ¢(cosf — hsin «9)) d(sinf + hcosh) (54)

— ¢ (I3 + 1) sin @ + hcos 0) — ¢ ((cos @ — hsin ) (sin@ + hcos ) + (I5 — I,) cos O sin 0)
—g(cos® — hsinf) =0 (55)

— 4 (I3 + 1) sin @ + hcos ) — ¢* (h(cos® 6 —sin® @) + (I3 — I + 1 — h*) cosfsin6)
— g(cos@ — hsinf) =0 (56)

—1h¢ (I 4 1) sin 6 + hcos 0) — ¢ (hcos20 + (I3 — I + 1 — h*) cos fsin §)
— g(cos® — hsinf) =0 (57)

Compare to component 1 of Eq. (50). Note that the other components are also satisfied as
¢ = 0 then results in ¢ = 1) = 0. Reversing ourselves, we replace ¢ = —p¢/R and using our
usual rescaling p < p/R we can find the ¢ for any such circular motion:

¢’ [p((I3 + 1)sin 6 + hcos§) — (hcos20 + (I — I + 1 — h*) cosBsin )] =
g(cos — hsin®) (58)

If p = (cosf — hsin@) the CM is at rest, exactly at the center of the circle.

Again any combination of ¢ = constant, ¢ = constant that makes the first component of
Eq. (50) zero (allowing # = 0) is a solution to these equations of motion. We examine this
in the limit # — 0, by making a Taylors series expansion of first component of Eq. (50):

—g—h 9@ +9)] + (gh+$*(h* + 1) = |9(d+ )] ) 0 (59)
Defining Y = [qb((b + ID)} and seeking when the 1 component is zero results:

—g(1—h)+ R+ 1)0 = (h+ (1+1,)0) Y (60)

The end state situation of # — 0 with no rotation requires (gb + ¢) — 0. If Y is small
compared to g (basically because |¢ + 1| < |¢|) we obtain the equivalent of Eq. (45):

SNl
AL o

which shows the divergence of ¢ as 6 — 0.

We can examine the straight-line (¢ = 0) rolling solution with the CM directly above the
contact point (6 nearly 7/2): cos—hsin6 = 0 or cot™!(h) = §. Clearly this is a solution for
any 1. Algebraically the stability of this solution is a mess, so we investigate it numerically.



The ‘diameter spin’ solutions (qb £ 0, w =0,0= 0) require finding the angle 8, which is a
root of the first component of Eq. (50):

—¢*(sin@cosO(1 + Is — I — h?) + hcos 20) — g(cos @ — hsin ) (62)

0y ranges between cot~!(h) for slow spin, and tan=*(—2h/(1 + I3 — I, + h?))/2 for fast spin
(between 1.16 and 1.32 for our example). Algebraically the stability of this solution is a
mess, so we investigate it numerically.

The following calculations are based on an in-hand ring: R = 7.32/2 cm, h = 3.18/2 cm,
w = .5 cm. This results in scaled quantities I3 = (1 + (1 — w/R)?)/2 = 0.8727, I, =
(3(1+ (1 —w/R)?) + (2h/R)?)/12 = 0.4993, h <+ h/R = 0.4344. We keep g/R = 980 cm/s?,
i.e., our mathematical ring is proportional to the above but with R = 1 ¢cm. Time is in
seconds (unless otherwise stated it has not been scaled).
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for static (1/} = constant, ¢ = constant, ¢ = constant), circular motion with 6y = .1
LHS: With 1)y just 1% above that for stable circular motion: see clockwise CM motion.
RHS: With vy just 1% below that for stable circular motion: see counter-clockwise CM

motion.
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Figure 10: Straight line motion solutions, where the ring is started with its CM almost
(Af = .0002) directly above the contact (§ = cot™" h = 1.161).

LHS: With ¢y = 19.3, 6 oscillates, but just on one side of equilibrium. As a result the path
slowly deviates from a straight line.

RHS: With ¢, = 18.8, 6 quickly exceeds the limit of /2.
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Figure 11: ‘Diameter spin’ solutions, where the ring is started near its equilibrium angle 6y,

with

LHS: With ¢y = 1/g/R = 31.3, 6y = 1.225: 0 oscillates.

Yo = 0 and ¢ ‘fast’

RHS: With ¢g = 25.7, 0y = 1.205: 6 quickly exceeds the limit of /2.



Figure 12: Following FIG. 1 from Jalali, et al. we consider initial conditions: 6y = 7/2 — .55,
do = 4.51/ g/R, % = 0. It is important to recognize that workers commonly plot the motion
of the point A: r4 = (0,0, h), i.e., a point on the top level of the ring, directly above the CM.
The CM may have rather different motion! Also note that workers may use dimensionless
time: t < ty/g/R which effectively sets ¢ = 1 in the equations of motion.

LHS: CM motion.

RHS: motion of the point A.

Much of the interest in the classical dynamics of rolling rings was caused by the observation
that, in orbit decay, rolling disks consistently show one direction of circular CM motion,
whereas rings, in a single run, show both motions like Fig. 9 LHS and Fig. 9 RHS, that is,
the end state motion (say clockwise) will be preceded by a counter-clockwise phase. We are
now talking about the evolution of a non-conservative system. In some sense it’s no surprise
that forces not included in our mathematical model could cause the small shift that’s required
to shift from Fig. 9 LHS to Fig. 9 RHS. The original paper purposed that air drag caused the
difference, and that the presence (ring) or absence (disk) of a central hole produced different
drag coefficients. Experiments have ruled this out: use light weight material to fill the ring’s
hole without much changing I (air drag should depend on object shape not material make-
up) or do the experiment at low pressure. Another force not in our model is rolling friction.
It is important to recognize that rolling friction cannot be the result of a single force applied
at a single contact point. Rolling friction is much more complex than the simple sliding
friction discussed in intro physics: it depends on the material squish of wheel and surface
when they come into contact. As such it is a problem in continuum mechanics (material
flow) just as air drag is. If the air at the trailing end of a moving object moved analogously
to the air at the leading end, the non-viscous air drag would be zero (d’Alembert’s paradox).
Similarly if the leading edge force as the surface/wheel is compressed were the same as the
trailing edge force as the material is released, there would be no rolling resistance. A problem
with the rolling friction explanation is that it’s hard to see how the circular rim of a disk
could produce any different rolling friction force/torque than the circular rim of a ring. But
of course the effect of that additional force gets filtered through the equations of motion,
and we've seen that not much change is required. Workers have reported that various very
simple models of rolling friction (akin to the approximate v? air drag force) can account for
the reversing circular motion. Indeed we could take the original paper’s mathematical model



X

Figure 13: A wheel rolls to the right. If, as in the LHS, we limit contact to a single point,
no single force is consistent with drag. The displayed force vector would slow the CM, but
as a torque it would accelerate the rotation. This is not consistent! In the RHS the contact
is a footprint not a single point. The forces involved in compression at the leading edge are
larger than the same forces at the trailing edge. The result is a decelerating torque (and a
net normal force). Add a retarding force (with a corresponding torque less than that due
to the material compression), and we have a force system that can simultaneously slow the
CM and the rotation.

of air drag, and just call it rolling friction.

Hurricane Balls

@CP

Figure 14: Hurricane Balls consist of two spheres rigidly attached at a point.

Hurricane Balls are another symmetric toy that rolls without slipping. It has some significant
differences form other objects that we've considered. First rp is not a constant:

rp =a(0,—sinf, —1 — cosf) (63)



Second, it is ‘prolate’, i.e., [1 > I3:

5 70 0 L 00
I=ma®*| 07 0 |=2ma*>| 0 I, 0 (64)
00 2 0 0 Iy

where m is the mass of one ball. Let’s begin with some simple consequences. If the CM
remains fixed (hence 6 fixed), the contact point P will make a circle of radius asin 6 in the
plane. That contact will also inscribe a circle on the lower ball which also has radius asin 6.
As the object rotates, the arc length inscribed on the plane and on the lower ball must be
the same; same arc length and same radius means same angle, so Ay = At). We can reach
the same conclusion with more algebra by using out equation for veyy:

Ve = —w xrp = —a(f,dcosh, psind + 1)) x (0, —sinb, —1 — cosb) (65)
= a <(¢—w) sin 6, —6(1 +cos9),6’sin9) (66)

So if ¢ = ¢ and 6 = 0 the CM is at rest, but if 6 # 0 the CM will have both vertical (since
z = a(1 + cos#)) and horizontal components of velocity. ¢ = 1) =constant is inconsistent
with @ # 0 (see the third component of Eq. (80-81) below). Solving the actual equations
of motion will show that generally if 0 £ 0, ¢ # 1. ‘Lagrangians’ that employ ¢ = ¢ as a

constraint and include # are not solving the actual physics.

We can pursue the familiar game of finding solutions where P moves in a circle. Initially we
seek solutions with the CM at rest, so there is no horizontal contact force. Following Fig. 8,
note the additional differences: P is to the right of the CM so the torque due to the normal
force is out of the page, which is as expected as qb = w > 0. L, is exactly as in Eq. (51); the
torque due to the normal force is

I' = 2mgasing (67)
Setting L, ¢ = T, dividing out the scale factor 2ma2, and using g + g /a results
Lig=26 [13(2/}+q50089) sinf — I@sin@cos@] = 2mgasinf (68)
¢? [I3(1 + cosf) — Iy cos] = g (69)
s — (I — Iy) cosf] = é (70)
2 cosf = L (71)
5} @2

2 g
- — > = cosf (72)

5 @2

Our starting point for the full equations of motion is Eq. (8), but with an additional term
because rp is not constant:

I w+QxL=2mrp X (—wXxrp—wXxip+NXve—g) (73)
As usual T'll put the w time derivatives on the LHS:

I-w+2mrp x (Wxrp)=—2xL+2mrp X (—w xtp+ 02X (rp X w)—g) (74)



You can quickly check energy conservation in this form, by dotting with w:

d
w-I'w = a(rotational KE) (75)
2mw - |r xi(wxr) = Qm(wxr)i(wxr)—i(CMKE) 76
P at Py P P at

—w-AXL ~ w-(w&e;z) X (w&e3) ~w - (wxe3)=0
2mw rp X (X (rpXxw)) = 2mw - -rp X (—(Q - rp)w) =0

: d
—2mw-TpXg = 2mgw - e sinf =2mgsinf 6 = 7 (2mg cos 0)

Mathematica finds the RHS of this is:

sin 0 (g + @2 (I — Is + 1) cos 0 + 1) — ¢p(I5 + cosf + 1) + 92>
0 <1D (I3 4 cos® 6 + cos0) — ¢ cos O(I; — Is + cos b + 1)) (80)
0sin 0 cos (¢ — 1))

You can check that ¢ = ¢, § = 0, and cos§ = 2/5 — g/gz.S2 gives zero for the above. Mathe-
matica finds the LHS:

O(I; + 2cosf +2)

sin (g'é(ll + cosf + 1) — th(cos 0 + 1)) + G(I; cos B + (1 + cos §)?) (81)

d(Iscos 0 + cos? 0 — 1) — @O sin (I3 + cos O + 1) + (I3 — cos? 6 + 1)

We can now look for circular CM motions with ¢ = p¢. Referring to Fig. 14, p > 1
corresponds to the CM to the right of the circle center and requires a centripetal force to
the left whose torque opposes the normal force’s torque, and the reverse for p < 1. Seeking
the first component of Eq. (80) to be zero:

Go-1)-%
2—p

cosf = (82)

So as p ranges from % to 1, high-spin solutions with 0 < 6 < cos™! (%) are found but they

have (fairly small) CM motion. For p > 2, we can find constant 6, circular CM motions with
finite ¢ and ¢ ~ 0. The solution with the smallest ¢ + 1) ~ 1.94,/g occurs at p = 3.5.

Below I contrast the behavior of the rolling motion of the hurricane balls with the behavior
of a gyroscope made of hurricane balls with the bottom ball bottom (rg = (0,0, —2a)) held
fixed. From previous results we have the rotational KE:

T = % 1 (5 sin20) + 6°) + % 15 (beos() + ) (83)
KE of the CM ]
Tev = 5 2m(2a)? <¢2 sin?(0) + 6’2) (84)

and PE of the CM:
V = 2m2ag cosf (85)



Of course we’ll want to scale out the usual 2ma®. This can be manipulated into a (perhaps)
familiar form by combining 7T;..; and Ty, with results I =144 (this is basically the parallel
axis theorem) and g = 2¢g/a.

1

L= 5 h <¢2 sin?(6) + 92> + % I3 (gb cos() + w>2 — gcosf (86)

Dropping the tilde for notational ease, note that ¢ and ¢ are ignorable with canonical
momenta

oT - -
po = G =T (Seost) +4) (87)
oT . . o o
Po = % = I3 cos(f) <¢> cos(0) + w) + 11 ¢sin®(0) = py cos(0) + I; ¢sin*(d)  (88)
which gives us the energy:
1y (ps—pecos(9)? | P 1
E—2119 + 37, sin?(0) +2[3+gcosﬁ—2119 + V(0) (89)
where V' is
(Ps — Py COS(Q))z
V= + g cos f 4 constant (90)

21, sin?(#)

I begin by seeking the stability of the ‘sleeping’ 6 ~ 0 state, note p, = p, to avoid infinite
PE at 6 = 0. Next: Taylor expand V:

yoo M (%)_g((’;)mmtaﬂt (1)
(f—z—g) (92)

(’47“’ ~) (93)
(94)

For a stable equilibrium, the quantity in parenthesis must be positive. I'll wave my hands
vigorously below to suggest that, to make a connection to the real rolling hurricane ball
problem, one should actually use the original I1&g, in which case the condition becomes:

41
wh > =2

7 =359 (95)

which is way too big. (And note using I, and g would have made things worse.)

Starting to wave my hands, I argue that there is a mechanism (rolling) that forces, as
a holonomic constraint, ©» = ¢. The CM is a distance acosf above the bottom ball’s
center which is a constant (a) above the plane, so PE=mga cosf works. (No need for g.)
The situation actually keeps the CM from moving much, and in particular not rotating
horizontally at ¢ in a circle of radius 2asin @ (which is what made I;). If CM can be thought



of as attached to a fixed vertical wire so it can only move vertically and z = —asin 06 whose
KE contribution should be %Qma2 sin® 0 2, giving us an ‘effective Lagrangian’

1 : . : .
L= 5 L <¢>2 sin?(6) + 92> + % I3 ¢* (cos(A) + 1)* + %sin2 0 6* — gcosd (96)

Note that ¢ is ignorable, so we have p, a constant proportional to ¢ (but also depending on
0). Focusing on the 6 equation, and seeking a solution # =constant, we have:

. ) . L
I1¢*sinf cos @ — I3¢*(cos@ + 1) sinf + 6% sinf cosf + gsinf = % Z—e =0 (97)
¢* (I = Iz)cosO — ;) +g = 0 (98)
(I, — I;)cosf = Ij— % (99)

2 g
cos = - — = (100)

5 @2

So at least that is as desired, however the terms that would be on the rhs (related to 0 and
0) do not match Eq. (81) so the resulting dynamics are wrong. In short, by waving our
hands the Lagrangian can get one thing right, but most everything else predicted by the

Lagrangian is wrong.
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Figure 15: LHS: Starting with exact initial conditions for a ¢ =constant solution with

Yo = ¢o = \/2.6g/a (i.e., near the slow spin limit ¢, =

are static with no CM IIlOthIl

\/2.5¢g/a) as expected all quantities

RHS: With 6 slightly off we get oscillations. The solution is stable
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Figure 16: Same as previous but with much faster spin: ¢, = \/25g/a, and hence 6, = 1.20

near the limit cos'(2) = 1.16

LHS: Starting with ¢ .01 above the exact initial conditions for a static solution
RHS: Starting with ¢y 10% above that for a static solution. Note that # bounces to angles

smaller than the ‘limit’.
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Figure 17: Solutions with smaller 6 (but CM motion): p = 1.2,6 = 0.578
LHS: Starting with the exact initial conditions for a static (circular) solution
RHS: Starting with 6 0.01 above that for a static solution.
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Figure 18: ‘Sleeping spin’ solutions, where the balls are started with near 6y = 0, with
o = ¢o = \/9/7

LHS: With ¢y = .98+/g/a, 6 oscillates.

RHS: With éo = .97\/%, the CM spirals outward; 6 eventually exceeds the limit of 7/2.
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Figure 19: Same as previous except here initial conditions g[SO =0, z/}o R~ 2\/%. For 6 =~ 0,
(¢ + ¢) controls the configuration. From the third component of Egs. (81-2), one can show
¢ + qb ~constant. While 7,D and gb separately vary wildly the sum is nearly constant.

LHS: With ¢ = 1.95\/9%, 0 oscillates.

RHS: With ¢, = 1.9\/9%, the CM spirals outward; 6 eventually exceeds the limit of 7 /2.
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Figure 20: Seeking minimum ¢ + ¢, ‘sleeping’ (6 & 0) solutions (here near p = 3.5).
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LHS: If Eq. (82) is exactly satisfied (here with 6y = .01, p = 3.535) we find static solutions

which are stable against small deviations.

RHS: With larger deviations the CM spirals outward; 6 eventually exceeds the limit of 7 /2.



