MATHEMATICA QUICK REFERENCE

Run Mathematica

mathematica (evoke Mathematica frontend) Quit[] or Exit[] (exit Mathematica)
Arithmetic
+, -, % (or a space), /, = (power), e.g. axx"2 + 2 x - 3/5 (ax®+ 2z — 3/5) n~"digits base n number
Mathematical Functions
Sqrt [z] (vVz) Explz] or E*z (e*) Loglxl (Inz) Loglh,] (logbx)
Sin[z] (sm x) Cosl[z] (cosz) Tanl[z] (tanz) ArcSin([z] (sin™!x)
ArcCos [z] (cos™tz) ArcTan[z] (tan~'z) Sinh[x] (sinhz) Coshl[x] (coshz)
Tanh [z] (tanhz) ArcSinh[z] (sinh~'z) n! (factorial) Abs[x] (=)
Mod[n,m] (nmodm) Maxl[z,y,...] (max) Minl[z,y,...] (min) Binomiall[n,m] (C}})
Re[z] (real part) Im[z] (imaginery part) Conjugate[z] (z) Arglz] (argument)
LegendreP[n,z] (P, ()) HermiteH[n,z] (H,(x)) LaguerreL[n,a,z] (L%(z)) Bessellln, z] (J,(2))
Erf [z] ffo et dt) Gamma[z] (EulerI'(z)) Zetals] (Riemann ((s)) Randoml[] (number)
Mathematical Constants
Pi (r =~ 3.14159) E (e~271828) I (i=+/—1) Infinity (00)
Data Objects
123 (integer) 3/7 (rational) 1.0 (real) 2 + 8I (complex) "text" (string)
{a,b,... } (list with elements a, b, ...) hla,b,...] (expression/w head h, elements a, b, ...)
expr[[]] (i-th element of the expression expr) alil (indexed object)
Arbitrary-Precision Calculation
expr//N or Nlexpr] (numerical value of expr) N[expr, nl (value of expr with n-digit precision)
Rationalize[z] (rational number approximation) Precisionl[x] (significant decimal digits in x)
Defining Variables, Functions, and Rules
x = value (assign a value to symbol) expr /. z -> a (replace x by a in expr)
x = expr (delayed assignment) expr //. x -> a (replace repeatedly)
x = . or Clear[z] (remove value assigned to) lhs :> rhs /; test (apply rule if test is True)
flz] := expr (define a function f(z)) lhs := rhs /; test (assign if test is True)
Algebraic Calculations
Expand [expr] (multiply out products) Factor [expr] (reduce to a product of factors)
Together [expr] (common denominator) Cancel [expr] (cancel common factors)
Expand [ezpr,Trig->True] (sin?z — sin 2x etc.) Simplifyl[expr] (find simplist form)
Factor [expr,Trig->Truel (sin 2z — sin’z, etc.) Apart [expr] (write expr as a sum of terms)
Coefficient [expr,x] (coefficient of x in expr) Exponent [expr,] (max power of x in expr)
Solvel[lhs==rhs,] (solve algebraic equation for) DSolvelegn,y[z],x] (solve differential equation)
Reduce[egn,] (reduce equations) Eliminate[egn, €] (eliminate variable e)
Linear Algebra
{a,b,c (vector) {{a, b}, {c, d}} (2x2 matrix) n.m (matrix multiply)
Inverse[m] (inverse of matrix) Transpose[m] (transpose) Det [m] (determinant)
MatrixPower [m, n] (m™) MatrixExpl[m] (e™) LinearSolve[m, bl (solve mz=»)
Eigenvalues[m] (eigenvalues) Eigenvectors[m] (eigenvectors) Eigensystem[m] (value & vector)
Calculus
DLf, x] (0f/0x) Integratelf, z] ffdx) Series[f,{z,a,n}] (expand at a)
DLf, {x, n}] (0™ f/0x™) Integratelf, {z, a, b}] f fdz) Limit[f, z->al (limg—q f)
Dt [f] (df)y sum[f, {i, m, n}] (>,) Productlf,{i,m,n} (I[i~,f)
NIntegrate, NSum, NProduct, NSolve, NDSolve, FindRoot (numerical integration, summation, etc.)
Graphics
Plot[f, {z, a, b}, option->valuel (plot f as a function of x from a to b)
Show [plot, , plot,, ...] (redraw plots)
Plot3DL[f, {z, a, b}, {y,c, d}] (three-dimensional plot of f as a function of z and y)
ListPlot [{{z1, y1},{x2, y2}, ... }] (plot points (xl, yl) o)
ParametricPlot [{z, y}, {t, a, b}] (plot curve ())
Plot options:
AspectRatio (height-to-width ratio) AxesLabel->{"z","y"} (add labels) Frame -> True (draw frame)

1

Programming
Module[{a, b, ... }, expri; expra; ...
Table [expr,{i, max}]
Do Lexpr,{7, min, max, di}]
While[test, body]
For [start, test, inc, body]
If [test, then, elsel
Which/[test;, valuei, testy, ...]
Switchlexpr, formy, value;, formso, ...]
Function[z, body] or body &
Nest[f, x, n]
NestList[f, =, n]
Fold[f, x, {a, b, c}]
FixedPoint [f, x]
Apply[f, {a, b, c}] or £ @@ expr
Map[f,{a,b,c}] or £ /@ expr

i++ (post-increment) — i-- (post-decrement)

++i (pre-increment) — --i (pre-decrement)

(x text *) (comment) f::usage="text" (info)
Iterators in Do, Table, Sum, etc.

{maz} (iterate max times)

{i, min, maz} (i from min to max in steps of 1)

Logical Operators

== (equal) 1= (unequal)
< (less than) <= (less or equal)
> (greater than) >= (greater or equal)

List Manipulation
Part[t, 4] or t[[¢]]
Take[t, n]

Drop[t, n]

Count [, form]
Prepend[t, el
Append[t, el
ReplacePart[t, e, i]
Union[ty, ta, ...]

(i-th sublist)

(first n elements)

(drop first n elements)
(number of times form occur)
(add e at the beginning)

(add e at the end)

(replace with e at position 7)
(union of lists)

)

)

1 (a procedure/w local variables a, b, .

(evaluate expr with ¢ run from min to maz in steps of di
(evaluate start, then repetitively evaluate body and inc, until test fails
(give the value associated with the first test that is True
(give the value associated with first form matching expr
(generate list {z,

(apply the function f repeated until the result no longer change

, return value of last expr
(make a list of values of expr with ¢ from 1 to max

(evaluate body repetitively, so long as test is True

(evaluate then if test is True, and else if it is False

(specify a pure function
(apply the function f nested n times to x
f(@), f(f(x)),...} nested up to n deep
(produce fFf(f),¢)

s
(produce f(a,b,c)

)
)
)
)
)
)
)
)
)
)
)
)
;
(apply f to each elements, {f(a), f(b), f(c)})
)
)
)

i += di (add di to i) = *= ¢ (multiply x by ¢

-= di (subtract di) x /= ¢ (divide z by ¢
Timing [expr] (time) MemoryInUsel[] (space
{i, max} (¢ from 1 to maz in steps of 1)

{i, min, mazx, di} (i from min to maz in steps of di)

=== (identical) =!= (not identical)
p Il gq (or) p&& g (and)
'p (not) Xorl[p,q]l (exclusive or)

Positionl[t, form]
Last [t]

First[t]
MemberQ[t, form]
Insertl[t, e,]
Deletelt, 7]
Join[ty, ta, ...]
Intersection[ty, to, ...]

(the position form occur
(last element in ¢

(first element in ¢

(test whether form isin ¢
(insert e at position ¢
(delete element at position i
(concatenate lists together
(common to all lists

)
)
)
)
)
)
)
)
)
)

Sort [t] (sort elements in standard order Reverse[t] (reverse the order of elements
RotateLeft[t, n] (rotate n places to the left RotateRight [, n] (rotate n places to the right
Input/Output
<<file (read expressions from file, return last expr) Savel["file",] (save the definition of = to file)
expr>>file (write expr to a file) Display["!psfix>file",graph] (save as PS file)
expr>>>file (append expr to a file) ReadList["file",typel (read objects of a given type)
1! file (display the content of a file) PSPrint [graphl] (print a hardcopy of graphics)
<<Calculus‘VectorAnalysis® (load a package) 'command (issue a UNIX command)
Patterns
- (any expr) x- (any expr named x) x:pattern (match pattern)
x_h (pattern with head h) pattern /; condition (conditional) pattern?test (if test is True)
X (sequence of expr) x___ (zero or more expr) x_:v (expr with default)

Expression in Different Formats

FullForm[e] (full form) CForml[e] (C codes)

InputForm[e] (input) OutputForm[e] (out)
Input Editing and Help

% (last result) ?Name

hn (result on Out[n]) ??Name

Shift-Enter (evaluate expr) Ctrl-C

January 1998

(help on Name)
(more help on Name)
(interrupt execution)

FortranForm[e] (fortran)
MatrixForm[e] (matrix)

StandardForm[e] (math)
TeXForm [e] (TEX)

* (represent 0 or more characters)
@ (1 or more lower-case letters)
! (shell escape)

Prepared by Dr. Jian-Sheng Wang

