ENIAC’s Problem

1 Discussion

A Bit of History

Initiated during the height of World War II, the Electronic Numerical Integrator and Cal-
culator (ENIAC) was designed to make ballistics tables, which required solving F = ma
for the projectile as it moves down the barrel of the gun, and then flies, one hopes, to
its intended target. John Mauchly (Ph.D., physics, Johns Hopkins) and J. Presper Eckert
(MS EE, UPenn) completed the machine at University of Pennsylvania’s Moore Engineering
School in 1946—too late to contribute to the war effort.

Patent courts have determined that the design of the ENIAC was based on the much less
sophisticated “ABC” computer built at lowa State just before the war by John Vincent “JV”
Atanasoff (Ph.D., physics, Madison) and Clifford Berry (then a student at Iowa State, but
he completed his Ph.D., in physics at lowa State in 1948). Atanasoff had been motivated
to build his computer because of the lengthy quantum mechanical calculations required to
complete his thesis.

A third “first” computer was designed by Howard Aiken (B.S. Madison, Ph.D., physics,
Harvard) and built by IBM. Called the Automatic Sequence Controlled Calculator (ASCC)
or Mark I this machine relied on IBM’s electromechanical technology—relays rather than
vacuum tubes. It was therefore slow (e.g., multiplication of two numbers took 6 seconds)
and contributed little to the technology of electronic computers. Nevertheless this computer
was in operation in 1944, and ran essentially continuously until the end of the war under
Navy command.

Immediately following the war, computers were quietly built for code breaking and publicly
built for nuclear weapon calculations. The business world (and hence IBM) was initially
not much interested in duplicating the expensive, fragile, one-of-a-kind computers that were
the immediate descendants of the ENIAC. The first commercial computer was the UNIVAC
(Universal Automatic Computer), completed in 1951 by Eckert and Mauchly for the U.S.
Bureau of the Census. A total of 46 were sold. Perhaps the first scientific computer, ERA
1103, was designed by Seymour Cray (MS, applied math, UMn) for NSA in 1951 and first
publicly delivered in October 1953. IBM’s famous “failure” at scientific computing, the
Stretch (IBM 7030), was delivered to Los Alamos ten years after the first UNIVAC. A total
of 8 were produced. Gene Amdahl (Ph.D., physics, Madison) was an initial planner for
Stretch, and went on to become the Manager of Architecture for the IBM System/360,
which was to dominate business computing for two decades. Meanwhile Cray’s machines,
like the CDC 6600, dominated scientific computing for an equal period of time.

A Bit of Physics
The problem of solving F' = ma in real-world situations is two fold.

First, while the fundamental force laws are analytic (like Newton’s 1/72) the messy forces
experienced in real life are usually not expressible with a simple formula. A body moving



“slowly”! through a fluid (like air) is subject to a simple drag force, linearly proportional
to velocity, known as Stokes’ law (discovered by Sir George Stokes in 1845).

In the above context, “slow” means so slow that viscous forces dominate. In 1883 Osborne
Reynolds defined a dimensionless number that now bears his name:

_ 2Rv

v

where v is the kinematic viscosity of the fluid through which a sphere of radius R is moving
at a velocity v. For a sphere moving through a fluid, Re < 1 is required for Stokes’ law to
be closely followed, whereas for 103 < Re < 10°, the drag force is approximately:

Re

1
§C’Dpv27rR2

where Cp ~ 45. (For a 75 mm diameter shell, the upper limit corresponds to about 20
m/s.) For 10° < Re < 10%, the “drag crisis” occurs, and Cp is reduced. That takes us to
nearly the speed of sound, at which point effects having to do with the compressibility of
air become important. Above “Mach 172, the drag force depends approximately linearly
on velocity (but unlike Stokes’ law: with a negative y-intercept). All the above formulae
hide the fact that at “high” speeds, the fluid flow around the shell becomes turbulent
and the actual force on the shell varies in time. Thus for real objects, the time-averaged
drag force is experimentally determined at a variety of velocities and then an interpolating
formula is used to approximate the drag force in between the known values. Rather than
do the experiment we take our data from Marion & Thornton’s Classical Dynamics, which
in turn takes its data from Rheinmetall’s Handbook of Weaponry. Below find the data with
approximating curve

T T T T T T T — T T T
4+ .
e 3 4
o
2
g
o 2r |
g
(@]
dr h
0 L L SR | L L SR
A 1 10

Mach number M

"What does moving “slowly” mean? In some contexts it means moving at near the speed of light, in
other contexts it can mean moving less than 1 cm/year. Nothing that has units can be said to be big or
small!! In this case you need a comparison velocity, say, v., so you can define “slow” as less than v., or
better still, to say that the unitless number v/v. is less than some pure number (often 1).

*Mach number: M = v/c, where c is the speed of sound, is named for Ernst Mach (1836-1916). “Mach
1”7 is traveling at the speed of sound. Mach is also well known for his provocative works on the philosophy
of physics.



You can get this approximating function for Cp by including a package:

In[1]:= <<Cd.m ... Learn the function cd[m]

Second, in textbooks we find differential equations with formula solutions. Thus:

dza:_ 9
W——wx

has the nice solution:
z(t) = Asin(wt + @)

Cases like this are the exception. If the coefficients of your differential equation are slightly
tricky, the differential equation must be solved “numerically.” This means that (in our case)
the time interval of interest is partitioned into lots of individual instants: t; = iAt separated
by the fixed time At. We seek the position and velocity at those instants: z; = z(t;) and
v; = v(t;). (If we want to know the position or velocity at times in between those instants
we must interpolate.) The differential equation can then be used to determine x;4; and v;4+1
based on the earlier position and velocity. The best methods of taking one “step” forward
in time are quite sophisticated, but let’s look at a very simple example. Say you want to
solve the differential equation:

d*x

dt?
where a(z,v,t) is some known function. Then:

= a(z,v,t)

Tit1 = x; + v; At
Vi1 = vi—l—a(:ni,vi,iAt)At

that is the position is changed according to the current velocity; the velocity is changed
according to the current acceleration. In order to start such a process you need to know
the initial position and velocity, but of course, you’d also need those initial conditions to
solve the differential equation with textbook methods. If At is made sufficiently small, the
method will reproduce the motion (at least for a while).

Mathematica is able to solve a long list of textbook differential equations with the command
DSolve; it is able to “numerically” approximate the solution to any differential equation
using the command: NDSolve.

We consider here a R = 5 cm, m = 15 kg shell, with a muzzle velocity, vy, of 1000 m/s
(approximately Mach 3). The density of air, p, is about: 1.1 kg/m?; the speed of sound in
air, ¢ is about: 330 m/s. We assume the effect of the air is only drag: no lift. We seek to
solve the differential equation:

¢r_ 1, (v/c)pum R K
- = — vV —
m 2 5D v/c)pvm mg
with the initial condition:

z(0) =
z(0) =



vz(0) = wpcosh

v.(0) = wvpsinf

where 6 is the elevation angle of the gun barrel.

To help you solve the above problem (without doing it for you), consider a slightly different
problem:

v=10

theta=.7

solution= NDSolvel[{

x?? [t]== -Sqrt[x’ [t]"2+z’ [t]"2] x’[t],

z?? [t]== -Sqrtlx’ [t]"2+z’ [t]"2] z’[t] - 1,
x[0]== 0,
z[0]== 0,

x’ [0]== v Cos[thetal,

z’ [0]== v Sin[thetall},{x,z},{t,0,4}]

Notice: the vector equation becomes two coupled equations (N.B.: ==). Those two differ-
ential equations, plus the four initial conditions (e.g., x[0]==0), are the six elements of a
set (N.B.: { x>’ [t]l== ..., z’’[t]l== ..., etc. } ) and that set is the first argument
of NDSolve. The second argument of NDSolve is the set of functions you want to solve for.
The last argument reports the name of the independent variable and the interval (between
0 and 4) through which you seek a solution.

The slightly different differential equation we have solved with Mathematica is:

d?r

@:—UV—I{

I hope you can see how the vector differential equation became two coupled differential
differential equations as we wrote r, v, and the unit vector k in components, and expressed
the speed v in terms of the components of v.

The result of the Mathematica commands is:

Out [3]= {{x -> InterpolatingFunction[{{0., 4.}}, <>],
z —-> InterpolatingFunction[{{0., 4.}}, <>]1}}

That is to say Mathematica is hiding the complexity of the interpolation that is necessary
to make a function out of the series of points it has calculated in solving the differen-
tial equation. The trajectory of the shell is the trace of the moving point r(t); ¢ is the
parameter describing the location of the shell. To plot such a moving point we need to
do a ParametricPlot, but first we must extract the InterpolatingFunction from the
solution:

ParametricPlot [Evaluate [{x[t],z[t]} /. First[solution]],{t,0,3.2},PlotRange->A11]



The “/.”” says make the substitutions (“~>”) that constitute our First [solution]. (Our
solution actually only has a First part, but other equations might have several solutions,
for example, the quadratic equation.) The results should look like this:

1.5

0.5

2 Homework

Follow the above method, but use the proper data including the cd[m] function. Consider
the last two digits of your social security number: XZ. By varying the elevation of the gun
hit the point (1X000,Z00). Turn in a plot of the result.

Also turn in a printout showing each step as Mathematica solves the problem.

Ezxtra Credit: The density of air decreases as you go up:

p=poe M

where the scale height H =~ 8000 m. Solve the motion of the shell in the thinning air and
produce a plot that shows how the changing density of air affects the trajectory.



