
Lagrange Points

1 Discussion

No diagrams will be found in this work.

Joseph-Louis Lagrange, in the preface of his Mécanique analytique published 1788

While Joseph-Louis Lagrange (1736–1813) was proud to dispose of the geometrical language which
Newton had used to write his Principia, we will discuss Lagrange’s mechanics using diagrams. Many
of Lagrange’s efforts were directed at the Three Body Problem. While the motion of two point masses
interacting through their mutual gravitational attraction is no more complicated than the motion of
a single point-mass in a fixed 1

r2
force-field, the motion of three bodies interacting through gravity

is a singularly difficult problem. Even today solutions take the form of approximations, rather than
analytical results. Newton in working on the prototypical three-body problem: the motion of Sun,
Earth, and Moon, said that it “made his head ache”. (We will mostly phrase our work in terms of three
bodies: Earth, Moon, and satellite.)

We begin by considering the motion of the two most massive bodies (for us the Earth and Moon) and
then move on to consider the motion of an object so light that it does not affect its partners. (Notice
that this is a violation of Newton’s Third Law!) We will allow Newton’s Third to play a role for our two
big bodies. Thus Moon pulls on the Earth exactly as strongly as the the Earth pulls on the Moon. . . the
Earth is not an unmoved mover; it is also in orbit. The fixed point in the interaction between Earth an
Moon is the center of mass.
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We assume circular motion with (shared) angular speed ω, so:
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We now consider the view from a frame of reference rotating about the CM at exactly the pace needed
to keep up with the Moon. In this frame, both Earth and Moon are at rest, but there are addition
pseudo forces: centrifugal and Coriolis1. A satellite moving in our new frame will follow:

ma = − GM1m

|r− r1|2
u1 − GM2m

|r− r2|2
u2 +mω2r+ 2mωv× ẑ

where u1 and u2 are unit vectors that point towards Earth and Moon (respectively). Notice that the
Coriolis force is just like the v ×B magnetic force, the outward centrifugal force is like a sign-reversed
spring force, and all forces are proportional to m. We now switch to units scaled to the problem. If T
is the period of the Moon’s orbit (i.e., ω = 2π/T ), then our dimensionless version of time, t′, is defined
by:

t = t′T

Similarly we define a dimensionless distance:

r = r′(r1 + r2) = r′d

If we switch to these variables our satellite’s acceleration is given by:
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)

= ω2d

(

− 1− ǫ

|r′ − r′
1
|2u1 − ǫ

|r′ − r′
2
|2u2 + r′ +

1

π
v′ × ẑ
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where ǫ = M2/(M1+M2). (For the Earth-Moon system: ǫ = .0121.) Except for the velocity-dependent
Coriolis force we can make a potential to describe force (−∇φ = a′):
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I’m tired of putting primes on everything; in what follows r stands for r′, etc.

phi[x_,y_,e_]=(2 Pi)^2 ( -(1-e)/Sqrt[(x+e)^2+y^2] -e/Sqrt[(x-(1-e))^2+y^2] -

(1/2)(x^2+y^2) )

fx[x_,y_,e_]=-D[phi[x,y,e],x]

fy[x_,y_,e_]=-D[phi[x,y,e],y]

ContourPlot[phi[x,y,.1],{x,-1.5,1.5},{y,-1.2,1.2},

Contours->10,PlotPoints->50,PlotRange->{-80,-50},AspectRatio->Automatic]

The contour plot shows a view similar to that looking down the cone of a double-sourced volcano. Well
away from the origin, the centrifugal potential pushes everything out—that way is down the sides of
the volcano cone. There are two “holes” which might source lava in a volcanic eruption—that way is
down the gravitational well either to M1 or M2. Around the edge of the cone is the crater lip. The
lowest exit out is along the positive x axis (the connection between M1 and M2 is a bit lower), the exit
along the negative x axis is the highest valley between the twin peaks at ±60◦ from M1. This shows
this volcano:

1France: Gustav-Gaspard Coriolis, 1835
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Plot3D[phi[x,y,.1],{x,-1.5,1.5},{y,-1.5,1.5},

PlotPoints->50,PlotRange->{-80,-50},ViewPoint->{2,-2,.6}]

Now to have a “stationary” satellite (in this rotating frame!) we must be at a point where F = 0.
Maximums, minimums, and “saddle points” provide ∇φ = 0. The saddle points don’t look like stable
equilibrium points; the peaks look even less promising. . . but don’t forget that “magnetic field”. You
should know that physicists (and Scotty on Star Trek) use magnetic fields to confine particles. . .Maybe
it will stabilize our satellite!

But first let’s find the exact location of the peaks:

xp=-e+Cos[Pi/3]

yp=Sin[Pi/3]

Simplify[fx[xp,yp,e]]

Simplify[fy[xp,yp,e]]

The point indeed has F = 0. From the origin, the point is back ǫ (i.e., on top of M1), and then exactly
1 unit 60◦ from the x-axis. This proves that M1, M2, and our peak make an equilateral triangle. You
might have hoped Mathematica could directly find the roots with a command like:

Solve[{fx[x,y,e]==0,fy[x,y,e]==0},{x,y}]

but the problem is too complex for Mathematica to find the roots without some help. In an appendix we
will demonstrate the peaks are stable equilibrium positions for ǫ < 0.0385. Instead let’s view satellite
motion

solution=NDSolve[{x’’[t]==fx[x[t],y[t],.01]+(4 Pi) y’[t], y’’[t]==fy[x[t],y[t],.01]-(4 Pi) x’[t],

x[0]==-.01+Cos[Pi/3]+.01, y[0]==Sin[Pi/3],

x’[0]==0, y’[0]==0}, {x,y},{t,0,10}]

Out[11]= {{x -> InterpolatingFunction[{{0., 10.}}, <>],

> y -> InterpolatingFunction[{{0., 10.}}, <>]}}

ParametricPlot[Evaluate[{x[t],y[t]} /. solution],{t,0,10}]

ContourPlot[phi[x,y,.01],{x,0,1.3},{y,0,1.3},ContourShading -> False,

Contours->20,PlotPoints->50,PlotRange->{-65,-59},AspectRatio->Automatic]

Show[%%,%,AspectRatio->Automatic]

solution=NDSolve[{x’’[t]==fx[x[t],y[t],.04]+(4 Pi) y’[t], y’’[t]==fy[x[t],y[t],.04]-(4 Pi) x’[t],

x[0]==-.04+Cos[Pi/3]+.001, y[0]==Sin[Pi/3],
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x’[0]==0, y’[0]==0}, {x,y},{t,0,10}]

Out[17]= {{x -> InterpolatingFunction[{{0., 10.}}, <>],

> y -> InterpolatingFunction[{{0., 10.}}, <>]}}

ParametricPlot[Evaluate[{x[t],y[t]} /. solution],{t,0,10}]

ContourPlot[phi[x,y,.01],{x,0,1.3},{y,0,1.3},ContourShading -> False,

Contours->20,PlotPoints->50,PlotRange->{-65,-59},AspectRatio->Automatic]

Show[%%,%,AspectRatio->Automatic]
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Thus with ǫ = .04 and initial condition very close to the point where F = 0 (above right) the motion
seems to be diverging, whereas with ǫ = .01 and initial condition further from the F = 0 location (above
left) the motion seems confined.

2 Lab

Remember to turn in a printout showing each step as Mathematica solves the problem, in addition to
any requested plots. For a review of basic orbit parameters see:

http://www.physics.csbsju.edu/orbit/orbit.2d.html

Option A:

Moon Shot: starting from r = (.05, 0), find the velocity needed to project the spacecraft around the
Moon and back in the general direction of the Earth. Energy costs fuel, so limit your starting speed
to a maximum of 35. Determine the round trip time. Convert initial position, velocity, and round trip
time into miles, mph, and days. Extra: view the trajectory in the “unrotated” inertial frame described
in Option B.

Option B:

Moon Perturbations: Without the Moon, an Earth satellite orbits the Earth in a fixed ellipse. To what
extent does the Moon’s pull change this result? Starting from r = (.4, 0), view an Earth orbit in the
inertial frame. You must back-rotate to reach the inertial frame. At the same time it is useful to view
the location relative to the Earth rather than the CM:

rot[t_]={{Cos[2 Pi t], -Sin[2 Pi t]},{Sin[2 Pi t],Cos[2 Pi t]}}

v0=3; theta=Pi/2

solution=NDSolve[{x’’[t]==fx[x[t],y[t],.0121]+(4 Pi) y’[t],
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y’’[t]==fy[x[t],y[t],.0121]-(4 Pi) x’[t],

x[0]==.4, y[0]==0, x’[0]==v0 Cos[theta], y’[0]==v0 Sin[theta]},

{x,y},{t,0,12},MaxSteps -> 50000]

ParametricPlot[Evaluate[rot[t].{x[t]+.0121,y[t]} /. solution],{t,0,.15},

AspectRatio->Automatic]

ParametricPlot[Evaluate[rot[t].{x[t]+.0121,y[t]} /. solution],{t,11.85,12},

AspectRatio->Automatic,PlotStyle->{RGBColor[1,0,0]}]

Show[%,%%]

These plots show the original orbit and the orbit about one year later. Tape hardcopies into your
notebook. From your plots and solution estimate: the semi-major axis of the orbit, the period of
the orbit, and the precession rate (changing orientation of the orbit: unit= orbit rotation angle per
year). (Report these in miles, days, and ◦/year.) Using Kepler’s Third Law calculate the orbit period.
Note: comparing orbits two years apart should double the precession (if the precession rate is constant)
. . . does it?

Option C:

Consider the precessing orbit, calculated for a year, described in Option B above. At any instant the
orientation and eccentricity of the orbit can be calculated from the Lenz vector2:

A =
(r× v)× v

(2π)2
+

r

|r|

In this formula r and v are measured in an inertial frame with the Earth at the origin, so we must
displace our CM-centered coordinate r to center on the Earth, add the velocity from rotation to the
velocity measured in the rotating frame, and “unrotate” the vectors.

vx[t_]=x’[t]-y[t]2 Pi /. First[solution]

vy[t_]=y’[t]+x[t]2 Pi /. First[solution]

xe[t_]=x[t]+.0121 /. First[solution]

lenz=rot[t].({vy[t](y[t]vx[t]-xe[t]vy[t]),vx[t](xe[t]vy[t]-y[t]vx[t])}/(2 Pi)^2 +

{xe[t],y[t]}/Sqrt[xe[t]^2+y[t]^2]) /. First[solution]

The magnitude of A is the eccentricity; the direction of A is apogee. By measuring on a hardcopy
plot of an orbit, determine the eccentricity. ParametricPlot lenz (hardcopies please!) during the first
and last month. Note the varying eccentricity and direction-to-apogee during an orbit. Note the shift
in average A over a year. Use this shift to calculate the precession rate (see Option B). Calculate the
magnitude of A and compare to the eccentricity found from an orbit plot.

Option D:

Numerical Solution Errors: In contrast toMathematica’s symbol manipulation,Mathematica’s numerical
calculations have (unavoidable) error. We know that energy is conserved, but you will find that in the
numerical solution energy is not conserved. Work out the “Option B” orbit and plot out energy as a
function of time:

phi[x[t],y[t],.0121]+(1/2)(x’[t]^2+y’[t]^2) /. First[solution]

Plot[%,{t,0,1}]

Plot[%%,{t,11,12}]

2Lenz refers to W. Lenz who used this vector in his 1924 paper on the H-atom. However, Laplace’s 1799 work Traité

de mécanique celeste contains a much earlier use of this “vector”
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Convert the average percentage change in energy per year to a percentage change in semi-major axis
per orbit. Could you see this error in the orbit plot? The “numerical” friction will eventually bring the
satellite down. Assuming the eccentricity and the percentage decrease in a remain constant, find when
this orbit will intersect the Earth (at perigee of course).

Option E:

Tides: A fluid Earth would conform to an isopotential surface. In general the effect is small so we must
“un-wrap” the Earth before we plot (N.B. radius of Earth=.0166; show this!):

ContourPlot[phi[(r+.0166)Cos[u]-.0121,(r+.0166)Sin[u],.0121],{u,-Pi,Pi},{r,0,.00000001}]

The above plots the isopotential lines for a range of about 10 feet above a sphere centered on the Earth.
Note that the isopotential stretches out about a foot at u = ±π, 0. . . A fluid Earth would be extended
towards the Moon (u = 0) and in the direction opposite the Moon (u = ±π). Explain why this means
we should have about two high tides per day. Show that the size of the tides is approximately as I
stated above.

Option F:

Binary Stars & Mass Transfer: Consider a binary star system where M1 = 2M2, i.e., ǫ =
1

3
. It turns out

that, if these stars were born at the same time, M1 will expand to become a red giant first. If the stars
are separated by less than the distance M1 seeks to expand into, some of the gas that makes up M1 will
be deposited onto M2. As stated above, fluid (e.g., gaseous) objects will try to conform to isopotentials.
Thus as M1 starts to expand, the low potential point between the stars will serve as the lip pouring
material onto M2 (i.e., surplus material for M1 will start from the Lagrange point L1 on a trip towards
M2. Find the L1 location. Perform a numerical solution to the differential equation starting material
a bit beyond L1 with zero velocity. Find motion of the material over a month. ParametricPlot the
trajectory on top of the isopotentials contours (as on p. 4). What M2 radius would result in the material
just barely hitting “on the first try”? (Think about plotting distance to M2 vs. time.)

3 Appendix

We seek here to demonstrate the stability of the L4 Lagrange point. We begin by Taylor expanding the
potential in the vicinity of L4. Clearly near L4 the potential must have the form:

φ = φ0 +
1

2
Ax2 +Bxy +

1

2
Cy2

φ0 has no effect on the forces, linear terms in the Taylor expansion are zero since by definition ∇φ = 0

there, and we neglect the higher order terms which will be quite small a few km (i.e., ∆x,∆y ∼ 10−6)
from L4. It turns out that we will have to work some to extract the homogeneous quadratic piece of
the Taylor polynomial. If you remember your high school analytical geometry you should remember
that by a suitable rotation of axes, the above form can be transformed to:

φ = φ0 +
1

2
A′x′2 +

1

2
C′y′2

Series[phi[x-e+Cos[Pi/3],y+Sin[Pi/3],e],{x,0,2},{y,0,2}]

Normal[%] /. {x->q x, y->q y} . . . so the terms we want will be q2

Coefficient[%, q^2] . . . OK we’ve got our quadratic form; now
rotate axes

The easiest way to rotate our axes is to express the quadratic form in matrix form:

1

2
Ax2 +Bxy +

1

2
Cy2 =

1

2

(

x y
)

(

A B
B C

)(

x
y

)

=
(

x y
)

M

(

x
y

)
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and then diagonalize M (i.e., find it’s eigenvalues). The orthogonal matrix that diagonalizes M also
rotates the coordinate system.

m={{Coefficient[%, x^2],Coefficient[%, x y]/2},{ Coefficient[%, x y]/2, Coefficient[%, y^2]}}

Eigensystem[%]

mdiag=DiagonalMatrix[First[%]]

phiApprox[x_,y_,e_]={y,x}.mdiag.{y,x}

fxApprox[x_,y_,e_]=-D[phiApprox[x,y,e],x]

fyApprox[x_,y_,e_]=-D[phiApprox[x,y,e],y]

DSolve[{x’’[t]==fxApprox[x[t],y[t],e]+(4 Pi) y’[t], y’’[t]==fyApprox[x[t],y[t],e]-(4 Pi) x’[t]},

{x,y},t]

Mathematica’s solution goes on for some time, but you will notice the following terms:

2 2 2

Sqrt[2] Sqrt[-Pi + Sqrt[1 - 27 e + 27 e ] Pi ] #1

E

2 2 2

I Sqrt[2] Sqrt[Pi + Sqrt[1 - 27 e + 27 e ] Pi ] #1

E

Clearly the nature of the solution changes if

1− 27ǫ+ 27ǫ2 < 0

as it will be if 0.0385 ≈ (9−
√
69)/18 < ǫ < (9 +

√
69)/18 ≈ .9615

Note there is nothing particularly difficult in solving this approximate differential equation:

r̈ =

(

A′ 0
0 C′

)

· r+ 4π

(

0 1
−1 0

)

· ṙ

It can be solved by assuming a solution of the form: r = r0 eγt, and then solving the “eigenproblem”:

(

A′ − γ2 4πγ
−4πγ C′ − γ2

)

· r0 = 0

7


