4. A simple model of a ring molecule consists of three equal masses m which slide without friction on a fixed circular wire with radius R. The masses are connected by identical springs with spring constant k. The angular positions of the masses $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ are measured from a rest position in the clockwise sense as shown below (note that in the below diagram θ_{2} would be negative).

(a) Find the Lagrangian.
(b) Show that the mass matrix \mathcal{M} and the spring constant matrix \mathcal{K} are as shown below:

$$
\mathcal{M}=m R^{2}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \mathcal{K}=k R^{2}\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]
$$

(c) The Euler equations for this system are:

$$
m R^{2}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\ddot{\theta}_{1} \\
\ddot{\theta}_{2} \\
\ddot{\theta}_{3}
\end{array}\right]=-k R^{2}\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right]
$$

or, defining the vector $\boldsymbol{\Theta}=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$

$$
\mathcal{M} \cdot \ddot{\Theta}=-\mathcal{K} \cdot \Theta
$$

if we seek a periodic solution $\boldsymbol{\Theta}=\mathbf{v} e^{i \omega t}$, (where \mathbf{v} is a constant vector and ω is the constant angular oscillation frequency) we have:

$$
\omega^{2} \mathcal{M} \cdot \mathbf{v}=\mathcal{K} \cdot \mathbf{v}
$$

Show that the vector $\mathbf{v}=(1,1,1)$ satisfies this equation for $\omega=0$.
(d) Show that the vector $\mathbf{v}=(0,1,-1)$ satisfies this equation and find the corresponding ω.

