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The real numbers (denoted R) are incomplete in the sense that standard operations applied
to some real numbers do not yield a real result (e.g., square root:

√
−1). It is surprisingly

easy to enlarge the set of real numbers producing a set of numbers that is closed under
standard operations: one simply needs to include

√
−1 (and linear combinations of it).

Thus this enlarged field of numbers, called the complex numbers (denoted C), consists of
numbers of the form: z = a + b

√
−1 where a and b are real numbers. There are lots of

notations for theses numbers. In mathematics,
√
−1 is called i (so z = a+ bi), whereas in

electrical engineering i is frequently used for current, so
√
−1 is called j (so z = a + bj).

In Mathematica complex numbers are constructed using I for i. Since complex numbers
require two real numbers to specify them they can also be represented as an ordered pair:
z = (a, b). In any case a is called the real part of z: a = Re(z) and b is called the imaginary
part of z: b = Im(z). Note that the imaginary part of any complex number is real and the
imaginary part of any real number is zero. Finally there is a polar notation which reports
the radius (a.k.a. absolute value or magnitude) and angle (a.k.a. phase or argument) of the
complex number in the form: r∠θ. The polar notation can be converted to an algebraic
expression because of a surprising relationship between the exponential function and the
trigonometric functions:

ejθ = cos θ + j sin θ

Thus there is a simple formula for the complex number z1 in terms of its magnitude and
angle:

|z1| ≡
√

a2 + b2 = r

a = r cos θ = |z1| cos θ
b = r sin θ = |z1| sin θ
z1 = a+ bj = |z1|(cos θ + j sin θ) = |z1|ejθ

For example, we have the following notations for the complex number 1 + i:

1 + i = 1 + j = 1 + I = (1, 1) =
√
2∠45◦ =

√
2ejπ/4

Since complex numbers are closed under the standard operations, we can define things which
previously made no sense: log(−1), arccos(2), (−1)π, sin(i), . . . . The complex numbers are
large enough to define every function value you might want. Note that addition, subtraction,
multiplication, and division of complex numbers proceeds as usual, just using the symbol
for

√
−1 (let’s use j):

z1 = a+ bj z2 = c+ dj
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Figure 1: Complex numbers can be displayed on the complex plane. A complex number
z = a + bi may be displayed as an ordered pair: (a, b), with the “real axis” the usual x-
axis and the “imaginary axis” the usual y-axis. Complex numbers are also often displayed
as vectors pointing from the origin to (a, b). The angle θ can be found from the usual
trigonometric functions; |z| = r is the length of the vector.

z1 + z2 = (a+ bj) + (c+ dj) = (a+ c) + (b+ d)j

z1 − z2 = (a+ bj)− (c+ dj) = (a− c) + (b− d)j

z1 × z2 = (a+ bj)× (c+ dj) = ac+ adj + bcj + bdj2 = (ac− bd) + (ad+ bc)j

1

z1
=

1

a+ bj
=

1

a+ bj
× a− bj

a− bj
=

a− bj

a2 + b2
=

a

a2 + b2
+

−b

a2 + b2
j

Note in calculating 1/z1 we made use of the complex number a − bj; a − bj is called the
complex conjugate of z1 and it is denoted by z∗1 or sometimes z1. See that zz∗ = |z|2.
Note that, in terms of the ordered pair representation of C, complex number addition and
subtraction looks just like component-by-component vector addition:

(a, b) + (c, d) = (a+ b, c+ d)

Thus there is a tendency to denote complex numbers as vectors rather than points in the
complex plane.

While the closure property of the complex numbers is dear to the hearts of mathematicians,
the main use of complex numbers in science is to represent sinusoidally varying quantities
in a simple way. For example, you may remember that the superposition of sinusoidal
quantities is itself sinusoidal, but with a new amplitude and phase. For example, in a series
RC circuit the voltage across the resistor might be given by A cosωt whereas the voltage
across the capacitor might be given by B sinωt, and the voltage across the combination
(according to Kirchhoff) is the sum:

VR(t) + VC(t) = A cosωt+B sinωt where: A,B ∈ R

=
√

A2 +B2

(

A√
A2 +B2

cosωt+
B√

A2 +B2
sinωt

)

=
√

A2 +B2 (cos δ cosωt+ sin δ sinωt) where: cos δ =
A√

A2 +B2

=
√

A2 +B2 cos(ωt− δ)

Yuck! That’s a lot of work just to add two sinusoidal waves; we seek a simpler method
(which might not seem overly simple at first glance). Note that VR can be written as
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Figure 2: The complex conjugate is obtained by reflecting the vector in the real axis.
Complex number addition works just like vector addition.

Re(Aejωt) and VC can be written as Re(−jBejωt) so:

VR(t) + VC(t) = Re
(

(A− jB)ejωt
)

Now using the polar form of the complex number A− jB:

A− jB =
√

A2 +B2 e−jδ where: tan δ = B/A

we have:

VR(t) + VC(t) = Re
(

(A− jB)ejωt
)

= Re
(

√

A2 +B2 e−jδ ejωt
)

=
√

A2 +B2Re
(

ej(ωt−δ)
)

=
√

A2 +B2 cos(ωt− δ)

Differential Equations and e
iωt

Complex exponentials provide a fast and easy solution for many differential equations.
Consider the damped harmonic oscillator:

Fnet = −kx− bv = ma (1)

or:

0 =
d2x

dt2
+

b

m

dx

dt
+

k

m
x (2)

Seeking a more compact notation, we redefine the constants in this expression:

b

m
≡ 2β

k

m
≡ ω2

0 (3)

So:
d2x

dt2
+ 2β

dx

dt
+ ω2

0 x = 0 (4)



If we guess a solution of the form: x = Aert, we find:

[

r2 + 2β r + ω2
0

]

Aert = 0 (5)

Since ert is never zero, r must be a root of the quadratic equation in square brackets.

r =
−2β ±

√

4β2 − 4ω2
0

2
= β ± i

√

ω2
0 − β2 (6)

where we have assumed ω0 > β. Defining the free oscillation frequency ω1 =
√

ω2
0 − β2, we

have a solution:
x = Re

[

A e−βt eiω1t
]

= |A| e−βt cos(ω1t+ φ) (7)

In the driven, damped harmonic oscillator, we have a driving force: F0 cosωt in addition to
the other forces:

Fnet = F0 cosωt− kx− bv = ma (8)

Defining A0 = F0/m yields the differential equation:

d2x

dt2
+ 2β

dx

dt
+ ω2

0 x = A0 cos(ωt) (9)

If we seek a solution that oscillates at the driving frequency: x = Re
[

Aeiωt
]

, our differential
equation becomes:

[

−ω2 + 2βiω + ω2
0

]

Aeiωt = A0e
iωt (10)

So:

A =
A0

(ω2
0 − ω2) + 2βiω

(11)

From which we can extract the amplitude and phase of the oscillation, for example:

|A| = A0
√

(ω2
0 − ω2)2 + 4β2ω2

(12)

One can show that the amplitude is largest for

ω2 =
√

ω2
0 − 2β2 (13)

Finally it is customary to describe driven oscillators in terms of a dimensionless quality

factor, Q,

Q =
ω0

2β
(14)

If we then let x be the dimensionless frequency ratio ω/ω0, we can write the oscillation
amplitude in a particularly simple form:

|A| = A0/ω
2
0

√

(1− x2)2 + x2/Q2
(15)

Notice that the case of small damping (small β) corresponds to large Q.
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Figure 3: Resonance: the amplitude factor: 1√
(1−x2)2+x2/Q2

is plotted as a function of the

dimensionless frequency ratio: x = ω/ω0 for the case Q = 20. Clearly the largest amplitude
occurs when x ≈ 1, i.e., ω ≈ ω0

Homework

1. Prove that when you multiply complex numbers z1 and z2, the magnitude of the result
is the product of the magnitudes of z1 and z2, and the phase of the product is the
sum of the phases of z1 and z2.

Re

Im

θ1

z1

r1

z2 r2
θ2

z3

z3 = z1z2

θ3 = θ1 + θ2

r3 = r1r2

2. Express the following in the r∠θ format (I bet your calculator can do this automati-
cally):

(a)
1

1 + i
(b)

3 + i

1 + 3i
(c) 25e2i (d) (1/(1 + i))∗ (e)

∣

∣

∣

∣

1

(1 + i)

∣

∣

∣

∣

3. Find the following in (a, b) format (I bet your calculator can do this automatically):

(a)
3i− 7

i+ 4
(b) (.64 + .77i)4 (c)

√
3 + 4i (d) 25e2i (e) ln(−1)

4. Using the Euler relation: eiθ = cos θ + i sin θ show that:

d

dt
eiωt = iω eiωt

where ω is real and constant.

5. Show: ∀z ∈ C: |z/z̄| = 1, so z/z̄ = eiθ (for some θ ∈ R). What is the relationship
between the phase of z and θ?

6. ∀z ∈ C:
|ez| = eRe(z)



7. Consider a driven RC circuit (see below left). According to Kirchhoff’s law the voltage
drop across the resistor (IR, for current I) plus the voltage drop across the capacitor
(Q/C, for charge Q) must equal the voltage applied by the a.c. generator (V0 cos(ωt))
(where the generator is operating at an angular frequency ω). Thus:

Q

C
+R I = V0 cos(ωt) (16)

Since the the current flowing must accumulate as charge on the capacitor we have:

I =
dQ

dt
(17)

Thus we have the differential equation:

Q

C
+R

dQ

dt
= V0 cos(ωt) (18)

Using complex variable methods and guessing a solution of the form:

Q = Q0 e
iωt (19)

Determine the amplitude and phase of Q0 so you can express your final answer in real
form:

Q = A cos(ωt+ φ) (20)

Q

V
o

 c
os

(ω
t)

I

V
o

 c
os

(ω
t)

I

8. Consider a driven RL circuit (see above right). According to Kirchhoff’s law the
voltage drop across the resistor (IR, for current I) plus the voltage drop across the
inductor (L dI/dt) must equal the voltage applied by the a.c. generator (V0 cos(ωt))
(where the generator is operating at an angular frequency ω). Thus:

L
dI

dt
+R I = V0 cos(ωt) (21)

Using complex variable methods and guessing a solution of the form:

I = I0 e
iωt (22)

Determine the amplitude and phase of I0 so you can express your final answer in real
form:

I = A cos(ωt+ φ) (23)

9. Using the Euler relation: eiθ = cos θ + i sin θ show that:

d

dt
eiωt = iω eiωt

where ω is real and constant.



10. Since exey = ex+y, its clear that:

eiθeiφ = ei(θ+φ)

Expand both sides of this equation using the Euler relationship, and prove:

sin(θ + φ) = sin θ cosφ+ cos θ sinφ

and a similar relationship for cos.

11. Describe geometrically the set of points in the complex plane satisfying the following
equations:

(a) |z| = 2

(b) Im(z) = 2

(c) |z + 2i| = 2

(d) |z + 1|+ |z − 1| = 8

12. Calculate the sin of 1 radian directly with your calculator and compare that result to
what you get if you sum the first 5 non-zero terms of the Taylor series for sin.

13. Evaluate
∫

e(a+ib)x dx (where a, b ∈ R) and take real and imaginary parts to show:
∫

eax cos bx dx =
eax(a cos bx+ b sin bx)

a2 + b2
∫

eax sin bx dx =
eax(a sin bx− b cos bx)

a2 + b2

14. Show: arcsin z = −i ln
(

iz ±
√
1− z2

)

15. Let z = eiθ (θ ∈ R). Clearly, z2 = ei2θ. Using z = cos θ + i sin θ directly calculate z2.
Use the result to show the double angle formulas:

cos 2θ = cos2 θ − sin2 θ

sin 2θ = 2cos θ sin θ

Consider z3 and prove the triple angle formulas.

16. If we consider the complex numbers z1 and z2 to be 2d vectors show that the dot
product of these two vectors is:

Re(z1z
∗

2) or Re(z2z
∗

1)

Use this result to show:

A ·B = A1B1 +A2B2 = |A||B| cos θ

17. Proceeding similar to the above problem, provide a formula for the cross product of
two 2d vectors and then show:

|A×B| = |A||B| sin θ

18. If f = f0 e
iωt and g = g0 e

iωt where f0 and g0 are (complex) constants, then

Re(f) Re(g) =
1

2
Re(f∗g) =

1

2
Re(f∗

0 g0) (24)

The overbar indicates the time average over the cycle period T :

w =
1

T

∫ T

0
w(t) dt (25)


