
Periodic Hypocycloid Motion
Rod-in-Can Experiment

1 Apparatus

A large coffee can has been turned into a cylinder (radius R, mass M) by removing its top and
bottom. On the inside surface of the cylindrical can-edge various solid rods (radius r′, mass M ′)
can be attached so that the axis of the rod is a distance R′ ≈ R − r′ from the axis of the can. The
combined rod-in-can is free to roll without slipping on a level table. There is a stable equilibrium
position with the can rolled so that the rod is directly below the axis of the can. Rolling the rod-
in-can away from this stable equilibrium and releasing it results in an oscillation which combines
translation and rotation. Technically speaking the path followed by the rod’s center of mass is part
of a hypocycloid.
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2 Experiment

Find the period of the motion T (M ′) using at least six different rods. Make sure that M ′ (the rod’s
mass) spans a large range: from as light as possible (i.e., much lighter than the can) to several times
the mass of the can.

Much like a pendulum, the period of oscillation depends slightly on the amplitude of the oscillation.
Collect data using “small” amplitude (i.e., amplitudes with less than 30◦ of rotation; even smaller
amplitudes are required when M ′ > 1

2
M , see below).

3 Theory

Neglecting friction, the motion of the rod-in-can should conserve energy. We begin by finding and
then adding together the kinetic energy of the can and the kinetic energy of the rod. We repeatedly
use the theorem that the kinetic energy of a system can be calculated by adding the kinetic energy
of the system about its (assumed fixed) center of mass and the kinetic energy of the center of mass
(assumed to have the entire system’s mass).

The center of mass of the can is in the center of its axis. The motion about the center of mass is
pure rotation with kinetic energy 1

2
Iθ̇2 (for a cylinder: I = MR2). The center of mass of the can

moves along the tabletop with velocity Rθ̇; the contribution to kinetic energy is 1

2
Mv2 = 1

2
MR2θ̇2.



Thus the total kinetic energy of the can is:

K.E.can =
1

2
MR2θ̇2 +

1

2
Iθ̇2 ≈ MR2θ̇2

The center of mass of the rod is in the center of its axis. As the rod is rolled around in the can it is
rotating around its axis. When the rod-in-can has rolled 180◦, the surface of the rod that was below
the rod’s axis is now above the rod’s axis and the rod has rotated 180◦ about its center of mass.
Thus the motion of the rod about its center of mass is pure rotation with kinetic energy 1

2
I ′θ̇2 (for

a solid rod I ′ = 1

2
M ′r′2).

It takes a bit more work to find the kinetic energy of the rod’s center of mass on its complex
hypocycloid trajectory. We proceed by parameterizing the position of the rod’s center of mass in
terms of the angle θ, and taking the derivative of the position vector to get the velocity vector.

x : x = Rθ −R′ sin θ ẋ = (R −R′ cos θ)θ̇

y : y = −R′ cos θ ẏ = R′ sin θ θ̇

v2 : v2 = ẋ2 + ẏ2 =
[

(R2 + R′2)− 2RR′ cos θ
]

θ̇2

(Our origin is the on the can’s axis at the equilibrium position; x is horizonal, y is vertical.)

Thus:

K.E.rod =
1

2
M ′

[

(R2 +R′2)− 2RR′ cos θ
]

θ̇2+
1

2
I ′θ̇2 ≈

1

2
M ′

[(

R2 +R′2 +
1

2
r′2

)

− 2RR′ cos θ

]

θ̇2

The total kinetic energy (can and rod) is:

K.E.total =
1

2
θ̇2

[

M ′

(

R2 +R′2 +
1

2
r′2

)

+ 2MR2 − 2M ′RR′ cos θ

]

=
1

2
θ̇2 (2M ′RR′)

[

1− cos θ +
M ′(R −R′)2 + 1

2
M ′r′2 + 2MR2

2M ′RR′

]

= θ̇2 (M ′RR′)

[

1− cos θ +
R

R′

(

3

4

r′2

R2
+

M

M ′

)]

= θ̇2 (M ′RR′) [1− cos θ + 2ǫ]

The can’s center of mass does not move vertically during the motion and hence does not contribute
to the potential energy. The rod’s potential energy is:

P.E.rod = M ′gy = −M ′gR′ cos θ

The total energy of the system is conserved; it can be conveniently evaluated when the system is at
rest at the extreme turning point θ0. At that point all the energy is in the form of potential energy.
Energy conservation now is the equation:

θ̇2 (M ′RR′) [1− cos θ + 2ǫ]−M ′gR′ cos θ = −M ′gR′ cos θ0

Solving for θ̇2 we have:

θ̇2 =
g

R

cos θ − cos θ0
1− cos θ + 2ǫ

=
g

R

sin2
(

θ0

2

)

− sin2
(

θ

2

)

sin2
(

θ

2

)

+ ǫ



where we have used the trigonometric identity:

cos θ = 1− 2 sin2
(

θ

2

)

It takes 1

4
period for the rod-in-can to rotate from equilibrium (θ = 0) to maximum (θ = θ0):

T

4
=

∫ θ0

0

dθ

θ̇
=

√

R

g

∫ θ0

0

√

sin2
(

θ

2

)

+ ǫ

sin2
(

θ0

2

)

− sin2
(

θ

2

) dθ

We “simplify” by making the following substitutions:

T0 = 2π

√

R

g

k = sin

(

θ0
2

)

kz = sin

(

θ

2

)

yielding:

T =
4T0

π

∫

1

0

√
k2z2 + ǫ

√
1− z2

√
1− k2z2

dz

In the small amplitude limit: ǫ > k2 → 0 we can Taylor expand the integrand to find:

T = 2T0

√
ǫ

(

1 +
1 + ǫ

16ǫ
θ2
0
+

−9 + 2ǫ+ 11ǫ2

3072ǫ2
θ4
0
+ · · ·

)

Generally we hope to ignore all but the first term, thus: T ≈ 2T0

√
ǫ. For θ0 <

√
ǫ the corrections are

generally small. For example, for ǫ = .1 (from, for example, a M/M ′ = .2) and an angular amplitude
of 30◦ ≈ 0.524r >

√
ǫ, the first-term-only version of the period formula is off by 20%, whereas the

same system with an angular amplitude of 10◦ ≈ 0.175r <
√
ǫ matches the first-term-only period

formula to within 2 1

2
%. Note that for M ′ ≫ M , ǫ → ǫ∞ and the required “small amplitude” θ0

becomes quite small (∼ 5◦) and care is needed if you intend to stay in the small amplitude limit.

In the limit ǫ → ∞ (for example, M ′ ≪ M) the amplitude dependence of the period is exactly the
same as for a pendulum. For example with an angular amplitude of 45◦ the small angle formula is
accurate to within 4%.

For ǫ = 0 the integral can be done exactly:

T =
2T0

π
log

(

1 + k

1− k

)

≈
2T0

π
θ0

(

1 +
1

24
θ2
0
+

1

384
θ4
0
+ · · ·

)

Note that in this case there is strong (linear) dependence of period on amplitude.
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Figure 1: A plot of T/T0 for ǫ = 1. Note the slight dependence of period on angular amplitude for
small amplitude.
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Figure 2: A plot of T/T0 for ǫ = .01. Note the nearly linear behavior of period with angular
amplitude, down the region of k ∼

√
ǫ, where it finally becomes constant.



4 Results

For small amplitude, we see that

T 2 ∝ ǫ =
1

2

R

R′

(

3

4

r′2

R2
+

M

M ′

)

∝ A+
B

M ′

Of particular interest is ǫ∞, the value of ǫ for infinite M ′. The table below records typical results
for different coffee cans:

Can R (cm) M (g) ǫ∞

1 lb 5 115 .02

2 lb 6 1

4
170 .01

3 lb 7 1

2
250 .008

For small M ′ (large ǫ), forces must be large enough to produce oscillation; we find a practical upper
bound of ǫ ∼ 5.

The following data was collected by a student using the 3 lb coffee can:

M ′ (g) T (sec)
49 2.05
89 1.54
119 1.48
229 .97

1,314 .41
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The fit line is:

T 2(s2) = .045 +
.204

M ′(kg)


