Using JKFF to "solue" state diegram probloms
 G le find crecuit that follows diagran.

Basis idea same as DFF circoits: GAtES prodace the futare from present Aduantoge: lots of $X S$ fon JK make Gates a srupla circiot transitins:

	J	K
$0 \rightarrow 0$	0	x
$0 \rightarrow 1$	1	x
$1 \rightarrow 0$	x	1
$1 \rightarrow 1$	x	0

Eg- Gray Coconta: $\quad 00 \rightarrow \mathrm{OH} \rightarrow \mathrm{H} \rightarrow 10$

Q_{1}	Q_{0}	J_{1}	K_{1}	J	K_{0}
0	0	0	k	1	γ
0	1	1	x	x	0
1	1	x	0		x
1	0	x	1	0	x
1		1	1		\bar{U}_{0}
		Q_{0}	α_{1}		

often can fiad batean eppressro Jest by looking
Eg - Prime runben Coucten check: whet happans to exclicled state 63

$$
\begin{array}{llllll}
110 & J_{2} k_{2} & J_{1} k_{1} & J_{1} k & 1 & 1 \\
1 & 1 \\
001 & 1 & 0 & 1 & 1 & 1
\end{array} 0
$$

Eg synchronuus bimars counter (\% bits)

Some packaged turctions
Corntas - size (inbits) decade a binang
"rippl" = asynchronuus or synchronous upldown i carry i ensbles
clean, preset $=$ load (sy nchroucas or asynchromors) Shift Resister in DQ DQ DQ ... PQ out size (in bits - are all bits avarlable on pios or intanal) $L R$ shifts
clean, preset=load (symchronoms or asynehronous)
use: parallel \leftrightarrow senrel maltipl, b, 2
37. Design a synchronous circuit built from three edge-triggered JKFFs that follows the below state diagram, where the three binary digits represent the values of $Q_{1} Q_{2} Q_{3}$:

(i.e., when control line $U=1$ the circuit counts up to 4 (i.e., mod-5); when control line $U=0$ the circuit counts down from 4). Your job is to determine the gate arrangement needed to make this cycle run, i.e., connecting the outputs of the three JKFFs: Q_{i} (and/or \bar{Q}_{i}) and the U line to the inputs of the three JKFFs: $J_{i} K_{i}$ possibly using the usual (AND, OR,...) gates.

Transition:	$J \quad K$	
$0 \longrightarrow 0$		
$0 \longrightarrow 1$		
$1 \longrightarrow 0$		
$1 \longrightarrow 1$		

(a) Begin by considering the possible transitions of a single JKFF. What values of $J K$ allow a particular transition? Fill in the above table. Hint: in every row either J or K will be an X for "don't care".
(b) Fill in the below table which displays the desired cycles

U	Q_{1}	Q_{2}	Q_{3}	J_{1}	K_{1}	J_{2}	K_{2}	J_{3}	K_{3}
1	0	0	0						
1	0	0	1						
1	0	1	0						
1	0	1	1						
1	1	0	0						
0	1	0	0						
0	0	1	1						
0	0	1	0						
0	0	0	1						
0	0	0	0						

Note that there are additional "don't care" possibilities in the full truth table.
(c) Maxterm the 0s for J_{3} to produce a product-of-sums.
(d) Make a Karnaugh map of J_{2} using the four logical variables U, Q_{1}, Q_{2}, Q_{3}. Don't forget to include the Xs (don't care) in your map! Circle appropriate groups and report the resulting simplest possible boolean expression for J_{2}. Please carefully label your Karnaugh maps so I know what each row and column of the map represents!

