Using JKFF to "solve" state diagram problems

$$GATES$$

 $GATES$
 $GATES$
 $GATES$
 $GATES$
 $GATES$ produce the follows diagram
 $GATES$ to strupton Circuit:
 $GATES to Strupton Circuit
 $Tool I = 1 \\ X O$
 $GATES to Strupton Circuit
 $Tool I = 1 \\ X O$
 $GATES to Strupton Circuit
 $Tool I = 1 \\ X O$
 $GATES to Strupton Circuit
 $Tool I = 1 \\ X O$
 $GATES to Strupton Circuit
 $Tool I = 1 \\ X O$
 $GATES to Strupton Circuit
 $Tool I = 1 \\ X O$
 $GATES to Strupton Circuit
 $Tool I = 1 \\ X O$
 $GATES to Strupton Circuit
 $Tool I = 1 \\ X O$
 $GATES to Strupton Circuit
 $Tool I = 1 \\ X O$
 $GATES to Strupton Circuit
 $Tool I = 1 \\ X O$
 $GATES to Strupton Circuit
 $Tool I = 1 \\ X O$
 $GATES to Strupton Circuit
 $Tool I = 1 \\ Y O$
 $GATES to Strupton Circuit
 $Tool I = 1 \\ Y O$
 $GATES to Strupton Circuit
 $GATES to Strupton Circuit Strup$$

=

Eq. Synchron mus bit many core when (3 bits)

$$\frac{110}{101} = \frac{100}{101} = \frac{100}{100} = \frac{100}{100$$

37. Design a synchronous circuit built from three edge-triggered JKFFs that follows the below state diagram, where the three binary digits represent the values of $Q_1 Q_2 Q_3$:

(i.e., when control line U=1 the circuit counts up to 4 (i.e., mod-5); when control line U=0 the circuit counts down from 4). Your job is to determine the gate arrangement needed to make this cycle run, i.e., connecting the outputs of the three JKFFs: Q_i (and/or \overline{Q}_i) and the U line to the inputs of the three JKFFs: $J_i K_i$ possibly using the usual (AND, OR,...) gates.

- (a) Begin by considering the possible transitions of a single JKFF. What values of JK allow a particular transition? Fill in the above table. Hint: in every row either J or K will be an X for "don't care".
- (b) Fill in the below table which displays the desired cycles

U	Q_1	Q_2	Q_3	J_1	K_1	J_2	K_2	J_3	K_3
1	0	0	0						
1	0	0	1						
1	0	1	0						
1	0	1	1						
1	1	0	0						
0	1	0	0						
0	0	1	1						
0	0	1	0						
0	0	0	1						
0	0	0	0						

Note that there are additional "don't care" possibilities in the full truth table.

- (c) Maxterm the 0s for J_3 to produce a product-of-sums.
- (d) Make a Karnaugh map of J_2 using the four logical variables U, Q_1, Q_2, Q_3 . Don't forget to include the Xs (don't care) in your map! Circle appropriate groups and report the resulting simplest possible boolean expression for J_2 . Please carefully label your Karnaugh maps so I know what each row and column of the map represents!