20-4. (a)

(b)

This may be considered a reversible process (as well as isothermal), so we use AS = Q/T where
@ = Lm with L =333 J/g from Table 18-4. Consequently,

333J/g)(12.0g)

_ _
AS = AR =146 J/K .

The situation is similar to that described in part (a), except with L = 2256 J/g, m = 5.00 g, and
T = 373 K. We therefore find AS = 30.2 J/K.

20-11. The connection between molar heat capacity and the degrees of freedom of a diatomic gas is given by

7

setting f = 5 in Eq. 19-51. Thus, Cv = 2R, C, = IR, and v = £. In addition to various equations

5

from Chapter 19, we also make use of Eq. 20-4 of this chapter. We note that we are asked to use
the ideal gas constant as R and not plug in its numerical value. We also recall that isothermal means
constant-temperature, so To = T3 for the 1 — 2 process.

()

(d)

The gas law in ratio form (see Sample Problem 19-1) as well as the adiabatic relations Eq. 19-54
and Eq. 19-56 are used to obtain
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process 1 — 2:

The work is given by Eq. 19-14: W = nRT;In(V2/V1) = RT;1n3 which is approximately
1.10nRT; .

The energy absorbed as heat is given by the first law of thermodynamics: Q@ = AFEy, + W =
0+ W ~ 1.10nRT; .

The internal energy change is AF;, = 0 since this is an ideal gas process without a temperature
change (see Eq. 19-45).
The entropy change is AS = Q/T1 = 1.10nR.

process 2 — 3 :
The work is zero since there is no volume change.
The internal energy change is

T
Q=nCy (Tzs—Ty) =n (gR> (30—14 - T1> ~ —0.889nRT .

This (—0.889nRT} ) is also the value for AF;, (by either the first law of thermodynamics or by

the definition of Cy/ ).
Va T
nR ln(vi> + nCly ln<ﬁ)

For the entropy change, we obtain
5 Ty /304
nR In(1) +n (ER) ln< 1/Tl )

O—i—gnR In(37%%) =~ —1.10nR.

AS

process 3 — 1:

W =Q—AFin =0— 2nR(Ty —T3) = —3nRTy (1 - 37°4) = —0.889nRTy
By definition, @ = 0 in an adiabatic process, which also implies an absence of entropy change

(taking this to be a reversible process).
The internal energy change must be —W (see above), so AEj,; = +0.889nRT; .



20-13. (a) We refer to the copper block as block 1 and the lead block as block 2. The equilibrium temperature
Ty satisfies mic1 (T — T5.1) + maca(Ty — T5.2) = 0, which we solve for T:

miciT; 1+ macaT; o

Ty =
mic1 + maca

(50 2)(-386 J /- K) (400 K) + (100 g)(.128 J /g-K) (200 K)
(50g)(-386 J/g-K) + (100 g)(.128 J/g-K)
= 320K .

(b) Since the two-block system in thermally insulated from the environment, the change in internal
energy of the system is zero.

(¢) The change in entropy is

AS = AS1+ASy =mi 1n( i ) + macs ln< Ty )
Ti1 T2

320K
400K

(502)(.386 J/g-K) ln(
+1.72 J/K .

) + (100 g)(.128 J/g-K) 1n<320K)

200K

20-16. In coming to equilibrium, the heat lost by the 100 cm?® of liquid water (of mass m,, = 100 g and specific
heat capacity ¢,, = 4.190J/g-K) is absorbed by the ice (of mass m; which melts and reaches Ty > 0°C).
We begin by finding the equilibrium temperature:

|
o

dQ

Qwarm water cools T Qice warms to 0° T Qice melts 1 Qmelted ice warms
cwmy (Tr —20°) + ¢;m; (0° — (=10°)) + L m; + cpwym; (T — 0°)

which yields, after using Ly = 333 J/g and values cited in the problem, Ty = 12.24° which is equivalent
to Ty = 285.39 K. Sample Problem 20-2 shows that

T
AStemp change = TMC 1n(ﬁ>

for processes where AT =T, — T, and Eq. 20-2 gives

AS}nﬂelt = LFm

o

for the phase change experienced by the ice (with T, = 273.15 K). The total entropy change is (with
T in Kelvins)

AS e (28539 (2T L (28539 | Lemu
system  — wCw 203.15 1Ce —263.15 i Cw 573 15 57315

—11.241+0.663 +1.469 +9.753 = 0.644 J/K .

20-26. (a) Eq. 20-11 leads to
571—571—333K
Ty 31K
We recall that a Watt is Joule-per-second. Thus, the (net) work done by the cycle per unit time

is the given value 500 J/s. Therefore, by Eq. 20-9, we obtain the heat input per unit time:

=0.107 .

W 0.500kJ /s

“ 7 o] 0.107

= 4.66 kJ/s .

(b) Considering Eq. 20-6 on a per unit time basis, we find 4.66 — 0.500 = 4.16 kJ/s for the rate of
heat exhaust.



20-27. (a) Energy is added as heat during the portion of the process from a to b. This portion occurs at
constant volume (V}), so Qin = nCy AT'. The gas is a monatomic ideal gas, so Cy = %R and the
ideal gas law gives AT = (1/nR)(psVs —paVa) = (1/nR)(po—pa)Vs. Thus, Qin = 5(pp—pa)Ve- Vi
and p; are given. We need to find p,. Now p, is the same as p. and points ¢ and b are connected
by an adiabatic process. Thus, p.V = p,V} and

%Y o ; '
Da = Pc = <VC) Dy = <m> (1.013 x 10° Pa) = 3.167 x 10" Pa.

The energy added as heat is

Qin = =(1.013 x 105 Pa — 3.167 x 10" Pa)(1.00 x 10 m®) = 1.47 x 10* J .

| W

(b) Energy leaves the gas as heat during the portion of the process from ¢ to a. This is a constant
pressure process, SO

5 5
Qout = nCp AT = i(pava _pc‘/c) = §pa(Va - ch)

5
= 5(3.167 x 10" Pa)(—7.00)(1.00 x 1073 m?3) = —5.54 x 10? J .

The substitutions V, — V., =V, — 8.00V, = —=7.00V, and C, = %R were made.

(c) For a complete cycle, the change in the internal energy is zero and W = Q = 1.47 x 103J — 5.54 x
102J = 9.18 x 102 J.

(d) The efficiency is € = W/Qin = (9.18 x 10%2J)/(1.47 x 103 J) = 0.624.
20-32. (a) Using Eq. 19-54 for process D — A gives

ppVy = paVy

p
3_; (8Vo)" poVy'

which leads to

5
§1=32 = 7=3

which (see §19-9 and §19-11) implies the gas is monatomic.
(b) The input heat is that absorbed during process A — B:

Qu =nCpAT =n <gR> Ty <§—j — 1) =nRTy (g) (2—1)=poVo (g)

and the exhaust heat is that liberated during process C' — D:

5 T 5 1 5
QL =nC,AT =n (§R> Tp (1 - T—Z) =nRTp (5) (1-2) =~ pVi (§>

where in the last step we have used the fact that Tp = %TA (from the gas law in ratio form —
see Sample Problem 19-1). Therefore, Eq. 20-10 leads to

Qu
Qn

1
e=1- :1—120.75:75%.

20-35. A Carnot refrigerator working between a hot reservoir at temperature Ty and a cold reservoir at temper-
ature 71, has a coefficient of performance K that is given by K = T1,/(Ti — T1.,). For the refrigerator of
this problem, Ty = 96°F = 308.7K and Ty, = 70°F = 294.3 K, so K = (294.3K)/(308.7K—294.3K) =
20.4. The coefficient of performance is the energy (1, drawn from the cold reservoir as heat divided
by the work done: K = |Qr|/|W|. Thus, |Q| = K|W| = (20.4)(1.0J) = 20.4J.
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. This is an isothermal process so: @ = TAS = (273 + 342)(5.3098 — 3.6848) = 1000 kJ
2. These are isobaric processes so W = pAV, and Q = AFE + pAV

(a) 1b—2: 3209 — 2456 + 15 x 103 - (.02491 — .01034) = 753 + 219 = 972 kJ
(b) 3—4: 3297 — 2782+ 103 - (4011 — .2042) = 515 + 197 = 712 kJ

3. The heat required 6b—1la approximated as a straight-line pV’ process: first work: W = (15 x 10® +
15) - (.00166 — .00101—)/2 = 5 kJ then heat Q = AFE + W = 1586 — 226 + 5 = 1365 kJ,

4. These are adiabatic processes so W = —AF

(a) 2—3: 3209 — 2782 = 427 kJ
(b) 4—b5: 3297 — 2578 = 719 kJ

5. The only useful work occurs in the turbine: 427+719=1146. The required heat: 1365+10004+972+712=4049,
for an efficiency of .28. (Note: this is well below actual: much of the 6b—1a heating is in fact done
with ‘used’ steam.) Carnot gives: 1 — 327/873 = .63.

6. Q = AE + pAV =226 — 2449 4+ 15(.00101 — 10.0228) = —2220 — 150 = —2370 kJ
7. m=Q/cAT = 2370/4.186 % 20 = 28 kg



