Answer five questions: \#1 and four of the remaining questions

Physical Constants

$$
\begin{aligned}
& \sigma=5.6705 \times 10^{-8} \mathrm{~W} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~K}^{-4} \\
& R=8.3145 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{~mol}) \\
& N_{A}=6.0221 \times 10^{23} \\
& k=1.3807 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& 1 \mathrm{eV}=1.6022 \times 10^{-19} \mathrm{~J} \\
& 1 \mathrm{~atm}=1.0133 \times 10^{5} \mathrm{~Pa}
\end{aligned}
$$

Properties of $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& L_{V}=2256 \mathrm{~J} / \mathrm{g} \\
& c_{w}=4.19 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{~K}) \\
& L_{f}=333 \mathrm{~J} / \mathrm{g} \\
& c_{i}=2.22 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{~K}) \\
& \rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

1. Consider the following cycle starting with $1 \mathrm{~m}^{3}$ of a monoatomic ideal gas at a pressure of 1 atm and a temperature of 300 K .
(a) The volume is compressed and the pressure increased in such a way that the $p V$ curve is a straight line. Final pressure is 2 atm ; final volume is $\frac{1}{3} \mathrm{~m}^{3}$.
(b) In a constant-pressure (a.k.a., isobaric) process, the volume is returned to $1 \mathrm{~m}^{3}$.
(c) An adiabatic expansion reduces the pressure to 1 atm .
(d) A constant-volume (a.k.a., isochoric) process returns the temperature to 300 K .
(e) An isothermal process returns the system to the initial state.

On the below graph, accurately plot and label each leg of this cycle. This will require calculating various $p V T$ values at the end of some cycles. Fill in the below table giving the sign $(+,-, 0)$ of the quantity for each leg of the cycle.

path:	a	b	c	d	e
ΔT					
$\Delta E_{\text {int }}$					
Q					
W					
ΔS					

