Mathematica

Mathematica is a general system for doing symbolic and numeric mathematics-including root finding, integration, differentiation, matrix algebra, plotting, fitting, Note: pay close attention to capitalization as Mathematica commands are case dependent!

Starting Mathematica: On a UNIX workstation, open a terminal and at the tcsh (\%) prompt type:
math
mathematica
... For those using the command-line form.
... For those using notebooks.

Alternatively, Mathematica can be started from the Mandrake yellow star "start" menu: star \rightarrow CSBSJU Menu \rightarrow Physics \rightarrow math (or mathematica).
Exiting Mathematica: At the Mathematica ($\operatorname{In}[n]:=$) prompt type:
Quit ... Note capitalization.
Control-D also quits. Control-C aborts.

Input and Output:

With notebooks all input and output appears in a browser. You can print selected portions by selecting from a menu. If you run the command-line version, using an editor, cut and paste from an open file.

```
In[1]:= <<file.m
In[2]:= Import["file.dat","Table"]
In[3]:= !csh command
In[4]:= ?Fi*
In[5]:= Options[Plot]
In \([3]:=\) !csh command
```

... Mathematica will execute all the commands in file.m (note: .m is the suggested extension).
... Mathematica will create a list with the data from the file (note: .dat is the suggested extension). Also see Export.
... Mathematica will execute the csh command (e.g., ls, kwrite).
... Help for terms starting Fi, e.g., Fit.
... List options for commands, e.g., AspectRatio -> Automatic.

Examples:

In Mathematica, \% always stands for the last result. You can type \% \% to use the next-to-last result or $\% \mathrm{n}$ to use the result Out [n].

```
In [4]:= Integrate[x \(\left.\mathrm{x} \wedge \operatorname{2bxp}^{\operatorname{Ex}}[\mathrm{x}], \mathrm{x}\right]\)
\(\ldots \int x^{2} e^{x} d x\)
Out [4] = ... \(\ldots e^{x}\left(2-2 x+x^{2}\right)\)
\(\operatorname{In}[5]:=\mathrm{D}[\%, \mathrm{x}]\)
. . . Take the derivative of the previous result
Out [5] = . . . ...Simplify to get \(x^{2} e^{x}\)
In \([6]:=\mathrm{N}[\mathrm{Pi}, 50] \quad \ldots 50\) accurate digits of \(\pi\).
\(\operatorname{In}[7]:=\operatorname{FindRoot}[\operatorname{Tanh}[y]==1 /(2 / \mathrm{y}-1),\{\mathrm{y}, .9\}] \quad \ldots\). Finds a solution near \(y=.9\)
In \([8]:=\) Series \([\operatorname{Cos}[\mathrm{x}],\{\mathrm{x}, 0,6\}] \quad \ldots\) Taylor's expansion near \(x=0\) up to \(x^{6}\)
\(\operatorname{In}[9]:=\mathrm{f}\left[\mathrm{x}_{-}\right]:=\operatorname{Re}\left[\operatorname{Exp}\left[\mathrm{I}_{\llcorner\mathrm{x}}\right]\right] \quad \ldots \ldots\) Define the function: \(f(x)=\cos (x)\)
    the hard way
\(\operatorname{In}[10]:=m=\{\{a, b\},\{c, d\}\}\)
... Define matrix \(m=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\)
Mathematica knows lots of matrix operations including: Det [m], Inverse [m], Eigenvalues [m], Eigenvectors [m], Eigensystem[m], m.n, m+n, ...
```


Graphics:

Mathematica can produce both screen and hardcopy plots.

```
In[1]:= Plot[Sin[2\cupPi}\\mathbb{X}],{x,0,2}] ...A graph of \operatorname{sin}(2\pix)\mathrm{ appears on your
    screen.
In[2]:= PSPrint[%] ...Prints a copy on the Physics laserprinter.
In[3]:= Export["file.eps",%%,"EPS"] ...Saves a file of graphic.
```

You may want to try some fancy color graphics like:

```
In[4]:= Plot3D[Sin[x + Sin[y]], {x,-6,3}, {y,-9,9}, Lighting->True, Mesh->False,
    PlotRange->All, PlotPoints->90]
```


Including Mathematica Packages:

For example, to load the Graphics` Animation` package, at the Mathematica prompt type:

```
In[1]:= Needs["Graphics`Animation`"] ...Note capitalization and odd quote:
In[2]:= <<Graphics/Polyhedra.m ...Other ways of adding packages.
In[3]:= <<Graphics`Shapes
In[4]:= theta = .3; irat = .3; phidot = 1; psidot = (irat - 1) Cos[theta]
In[5]:= ShowAnimation[Table[RotateShape[AffineShape[Polyhedron[Cube],{1,1,irat }],
    -psidot t,-theta,-phidot t],{t,0,4 Pi,.1 Pi}]]
```


More Information:

For more information about Mathematica, please refer to

- The Mathematica Book, Fifth Edition, by Stephen Wolfram, ISBN: 1579550223
- Mathematica 4: Standard Add-on Packages
- /usr/local/mathematica_5.2/Documentation/English

