
Appendix A: fit

fit is a non-linear least-squares fitting program that allows you to fit (at most) nine param-
eters of a function to data contained in a file. The function must be expressed as a single
line of intrinsic Fortran functions, real numbers, operations (+, -, *, /, ** or ^) and ad-
justable parameters K1-K9. Both plot and fit use the prompt “*” to request commands
for action from the user.

A typical fit session begins by using the editor to create a data file. When creating the
data file, follow this convention: reserve the first line of the file for an identifying sentence,
and follow that line with columns of data separated by tabs or spaces. Typically you will
put x values in the first column, y values in the second column, and y-errors (if available)
in the third column. fit assumes this file is called fit.dat, but other filenames may be
SET.

Once you have created the file, start the program by typing fit to the linux % prompt:

% fit

*

(At any time you may exit fit by holding down the Ctrl key and simultaneously hitting
D. Note: the common windoze command Ctrl C kills programs rather than copies; simply
highlight by sweeping with mouse and then hit the center mouse button to paste at the
desired location.) SET fit’s FILE variable equal to the filename of the file you just created
by typing:

* SET FILE=filename

If you have no y-errors, inform the program by typing

* SET YECOL=0

(Don’t forget to hit the Return or Enter key after each line. Note: you cannot edit these
lines using arrow keys: you must backspace!)

If any other columns are out of place, reSET fit’s other column location variables: XCOL

and YCOL. Note that fit will use no more than 512 data points. When fit is properly
informed about your file type:

167

168 Appendix A: fit

* READ

and fit will read your data into its internal data storage area.

The next step is to tell fit the function you want it to fit to your data. As stated above,
you must be able to express this function in one line using the intrinsic Fortran functions
(e.g., log, log10, asin, ...), constant real numbers (e.g., 2, 6.03e23), operations (+,
-, *, /, ** or ^), and (possibly) varying parameters (K1-K9). Examples:

* set f(x)=k1*exp(-((x-k2)/k3)**2)

* set f(x)=k1*(1-exp(k2*x))

* set f(x)=k1/sqrt((x-k2)^2+k3^2)

The function should be typed without using spaces. Note that the program automatically
takes the absolute value of negative numbers raised to a power (e.g., (−2)3 = 8), but the
SQRT of a negative number is zero. Use repeated multiplications to simulate integer powers
(e.g., x3 = x ∗ x ∗ x), if the proper sign is required. Note that the default f(x) is the
polynomial k1+ k2 ∗ x + k3 ∗ x2 + · · · + k9 ∗ x8, defined with repeated multiplication.

Now it’s time to SET your initial guess for the K parameters that occur in your function,
with a command like:

* SET K1=3.14159 K2=4

Unlike linear least squares programs like WAPP+you must provide a moderately accurate
initial guess for each adjustible parameter. Time spent in careful consideration of parameter
values will be repaid many-fold. Bad initial parameter guesses will result in program crashes,
long computer fit times, and inaccurate computer results. fit will step into the first chi-
square (χ2) valley (χ2 minimum) it finds, and then stay there; so you must start fit close to
the right valley. It is advisable to try several different starting guesses for your parameters
to find the path that leads to the lowest value of χ2.

Once you have a good initial guess for your K parameters, you may ask the computer to
iterate to a minimum χ2. Of course, you must also tell the computer what K parameters it
should vary to find that minimum:

* fit

Enter list of Ks to vary, e.g. K1-K3,K5:

After you tell the computer what ks to vary, the machine will start its search. How does
fit know when to stop? It will, of course, never reach the exact valley bottom (i.e., χ2

minimum). If fit “finished” there is some evidence of convergence: either χ2 changed
hardly at all during its last downward step (∆χ2=DELCHI, default=.1), or the parameters’
first KSIG digits (default=4) didn’t change during its last downward step. Note: unchanging
digits for one step, should not be interpreted as unchanging digits for lots more steps, nor
should it be interpreted as an error. If fit “quit” then it’s sick of trying (SET by NITER,

Appendix A: fit 169

default=100), so you should assume more steps are needed to reach the valley bottom. This
suggests something is wrong. . . your initial guesses, the function, the data.

Once fit has quit or finished, it will print out summary results. Longer versions of the
results (including the covariance matrix needed to figure errors1) may be printed, typed on
the screen or placed in a file, at the users option. Always retain a copy of successful fit
results! Sometimes the found χ2 is so “bad” that you will be tempted to FUDGE, i.e., adjust
your y-errors until you get a reduced-χ2 of one. If you FUDGE be sure to write down why
you think this cheating was justified.

A good way to estimate errors is to repeat the experiment lots of times. However very often
the required time is not available. fit provides a possibility legitimate way to simulate
actual repeats: it repeatedly fits using random subsets of your data. This process is called
bootstrapping and it is invoked by the command BOOTST.

The command

* PRINT

will display your data (x, y, y-error, and f(x)) on the screen. fit will mark (?, !, :) points
that are 3, 2, or 1 y-errors away from f(x). Use this feature to see which data points are
poorly fit. Alternatively, you may use the program plot to display your data with fitted
curve.

You may find it helpful to do some parameter stepping yourself before you hand the final
fit over to fit. Put in a parameter guess, enter

* CHI

to find the resulting χ2, modify your guess and repeat the process.

fitting functions to data is an important and frustrating part of your education in physics.
Good luck!

Report problems and/or suggestions to Tom Kirkman.

1If the reduced χ
2 suggests a reasonable fit, the parameter uncertainties may be calculated from the

square root of the corresponding diagonal element of the covariance matrix.

170 Appendix A: fit

Special Commands

Start—in a terminal type: fit
$linux command — do any linux command from inside fit

@filename — execute indirectly a file of fit commands
Ctrl D — to exit program
Examples:

* $ls *.dat

* @test.fit

fit Commands

(unambiguous abbreviations and lowercase allowed)

Syntax:

* COMMAND

* COMMAND VARIABLENAME = value, VARIABLENAME = value ...

Examples:

* SET K1=0, K2=1, K3=-1, F(X)=K1+K2*X**2+K3*X**4

* re yec=0, fi=expt.dat

BOOTST performs a bootstrap with NBOOT iterations

CHI calculates χ2 using F(X), Ks, and data.

FIT fits F(X) to your data (requests list of Ks to vary)

FUDGE destroys existing y-errors and renorms them so χ2 = NPOINT

HELP displays these messages

PRINT displays data stored in program and F(X) (marks large-deviation points)

READ reads data from FILE: see XCOL, YCOL, YECOL, ROW, IBEGIN, NPOINT, FILE

SET allows you to set variables values without doing any action

SHOW shows variable values

WRITE writes x, y, y-error, and f(x) to FILE

Appendix A: fit 171

fit Variables

A constant for use in F(X) (0)

B same
(Note: A and B are used in WINDOW(X): WINDOW(X)=1 iff a ≤ x ≤ b, else zero)

C same

CHISQ most recent value of χ2 calculated

DELCHI fit stops if a step results in a χ2 change less than DELCHI (.1)

F(X) function use: A, ABS, ACOS, ASIN, ATAN, B, C, COS, COSH, EXP, INORM,

K, K1-K9, LOG, LOG10, NORM, PI, SIN, SINH, SQRT, TAN, TANH, WINDOW,

X, any real number, operations +, -, *, /, **, or ^

(K1+X*(K2+X*(K3+X*(K4+X*(K5+X*(K6+X*(K7+X*(K8+X*K9))))))))

FILE READ/WRITEs data with this filename (fit.dat)

IBEGIN first array element used during CHI, FIT, READ, PRINT, WRITE (1)

K1-K9 possibly adjustable variables in F(X)

KSIG fit stops after a step if all Ks retain KSIG unchanged digits (4)

NBOOT number of bootstrap iterations performed (25)

NITER fit stops if more than NITER test steps are needed (100)

NPOINT number of points used during CHI, FIT, READ, PRINT, WRITE (512)

ROW first row of data in FILE (2)

SEED if negative, re-initializes random generator’s seed (-1)

XCOL column of x data in FILE — used during READ (1)

YCOL column of y data in FILE — used during READ (2)

YECOL column of y-error data in FILE — used during READ (3)
Note: unread y-errors default to 1

172 Appendix A: fit

