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1 Cold Plasma Definitions
If we consider the case of a cold uniform plasma with only linear waves, then we have fromStix [1962]:

S = 1−∑
s

ω ps
2

ω2−Ωcs
2 (1a)

D = ∑
s

Ωcsω ps
2

ω (ω2−Ωcs
2)

(1b)

P = 1−∑
s

ω ps
2

ω2 (1c)

R = 1−∑
s

ω ps
2

ω (ω +Ωcs)
(1d)

L = 1−∑
s

ω ps
2

ω (ω −Ωcs)
(1e)

whereΩcs is the gyrofrequency of speciess, ω ps is the plasma frequency of speciess, andω is the wave frequency. The
dispersion relation, D(k, ω), can be simplified down if we assume the index of refraction,n, is parallel to the wave vector,
k. Then we have:

D(k,ω) = An4−Bn2+RLP = 0 (2)

where the termsA andB are defined by:

A = Ssin2 θ +Pcos2 θ (3a)

B = RLsin2 θ +PS
(

1+cos2 θ
)

(3b)

which has the unique solutions of:

n2 =
B±F

2A
(4)

whereF is defined by:
F = (RL−PS)2sin2 θ +4P2D2cos2 θ (5)

where we can see thatF is always real. Since the termsA andB are real, then we can say that n2 must either be purely
real (n2 > 0) or purely imaginary (n2 < 0). If n2 < 0, then the wave becomes evanescent (i.e. it damps out).

2 Turning Points
If we consider the case of an inhomogeneous plasma with dispersion relations of the form bκ2 + c= 0, whereκ is the

propagation constant, b and c are functions of density, magnetic field strength, and position [Stix, 1962]. If the variation
of plasma parameters is sufficiently slow, then we can argue that dBo/dx(dNi/dx)≪ kxBo(kxNi). If we also assume that the
scalar factor in the scalar wave equation (corresponds to the homogeneous plasma relation given by bκ2 + c = 0), then
we can say:

d2E
dx2 +κ2E = 0 (6)
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whereκ2 = -c/b and nowκ = κ(x). When we have the following two conditions:

|d
2κ

dx2 | ≪ |κ dκ
dx

| (7a)

|dκ
dx

| ≪ |κ2| (7b)

we can find an approximate solution for E to Equation 6 using the WKB approximation of the form:

E ≈ Co√
κ

e±i
∫

dx κ (8)

where Co is some constant. In regions where b(x) or c(x)= 0, then the variation inκ2 is rapid and Equation 8 is not a
valid solution to Equation 6. To deal with this issue, we can approximate Equation 6 in the vicinity of c(x)= 0[b(x) = 0]
using the linear[singular] turning point equation given by:

d2E
dx2 +(x− xo + iε)νE = 0 (9a)

d2E
dx2 +

µE
(x− xo + iε)

= 0 (9b)

whereν , µ , andε are positive real constants and Equation 9a(Equation 9b) represents the linear(singular) turning point
equation. The solution to Equation 9a is given by E= E+ + E− and Equation 9b is given by E= E1 + E2, where the Ej’s
are given by:

E± = A± (x− xo + iε)1/2 J±1/3 (ζ±) (10a)

E1 = B1 (x− xo + iε)1/2 J1 (ζ 1) (10b)

E2 = B2 (x− xo + iε)1/2 Y1 (ζ 1) (10c)

where A± and B1,2 are constants,Jn andYn are Bessel functions of the first and second kind, respectively, andIn andKn

are the modified Bessel functions of the first and second kind given by:

Jn(x) =
∞

∑
j=0

(−1) j

j(n+ j)

( x
2

)2 j+n
(11a)

Yn(x) =
Jn(x)cos(nπ)− J−n(x)

sin(nπ)
(11b)

In(x) = i−nJn(ix) (11c)

= e−inπ/2Jn

(

xeiπ/2
)

(11d)

Kn(x) =
π
2

I−n(x)− In(x)
sin(nπ)

(11e)

and the termsζ j are given by:

ζ± =
2
3

ν1/2 (x− xo + iε)3/2 (12a)

ζ 1 = 2µ1/2 (x− xo + iε)1/2 . (12b)

The above solutions join smoothly to the following solutions at the turning point. For simplicity, let us define the following:

β t ≡ (x− xo + iε)1/2 (13)

which changes Equations 12a and 12b to:

ζ± =
2
3

ν1/2β t
3 (14a)

ζ 1 = 2µ1/2β t . (14b)
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The solutions for Equations 9a and 9b at the turning point are:

E± = (−1)±A±β tI±1/3 (ζ±) (15a)

E1 =−B1β tI1 (ζ 1) (15b)

E2 =−B2β t { f rac2πK1 (ζ 1)± iI1 (ζ 1)} (15c)

where the sign in Equation 15c is chosen based upon the sign ofε (i.e. + for ε > 0).
If we consider a more complex wave equation of the form:

aκ x
4+(ℜ[b]+ iℑ[b])κ x

2+ c = 0 (16)

where a, b, and c are constants. Reflection and/or absorptionoccur at the critical layer if the following is satisfied:

ℑ[b]≫ 4|ac| ⇒ Absorption (17a)

ℑ[b]≪ 4|ac| ⇒ Reflection (17b)

which in practical application, Equation 17a looks like thefollowing:

(ω lhη⊥

4π

)2
≫ 6

β⊥

γ2

(

1+
ω lh

4

4Ωce
2Ωci

2

)(

nz
2Bo

2

4πNemec2 −1

)

(18)

where we have assumed T⊥,e = T⊥,i andβ⊥ is the perpendicular plasma beta andγ2 is defined by:

γ2 =
4π (N iMi +Neme)c2

Bo
2 (19)

and whereω lh is given by:
1

ω lh
2 =

1
Ωci

2+ω pi
2 +

1
ΩciΩce

(20)

3 Lower Hybrid Wave Definitions
In general, when deriving the dispersion relation for lowerhybrid waves (LHWs), one assumes thatΩci ≪ ω ≪ Ωce

≪ ω pe and that cos2 θ kB . me/M i. Thus, one finds that k‖/k⊥ . me/M i ≪ 1. We also know that LHWs can resonantly
interact with unmagnetized ions (k · V i) and magnetized electrons (k‖ Ve,‖) at the same frequencyω [Verdon et al., 2009a].
From this, we can see that LHWs can transfer perpendicular energy from the ions to parallel energy for the electrons, or
vice versa. In either case, the result can be directed (acceleration) or random (heating) energization.

In the cold plasma limit, the ES dispersion relation for LHWs is given by:

(

ω
ω lh

)2

= 1+
me

Mi
cos2 θ kB (21)

whereω lh is defined by:

ω lh
2 ≈ 1

1/ω pi
2+1/(ΩceΩci)

(22a)

=
(ΩceΩci)ω pi

2

(ΩceΩci)+ω pi
2 (22b)

and we know the following:

ΩceΩci = Ωce
2
(

ω pi

ω pe

)2

(23)

which leads to the final cold plasma ES approximation of:

ω lh
2 ≈ (ΩceΩci)

1+(Ωce/ω pe)2 . (24)
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Whenω ∼ ω lh, the ions are unmagnetized and free to move⊥-Bo while electrons must move‖-Bo. If δE is∼ ⊥-Bo, then
the electron response time is greatly increased and LH-resonance can only occur when the electron response time is less
than or comparable to the ion response time, or cos2 θ kB . me/M i. Notice that from Equation 21, the cold plasma ES LHW
does not have a group velocity. However, when warm plasma effects or EM effects are added, the mode can propagate.

In the cold plasma limit, the EM dispersion relation for LHWs is given by:

(

ω
ω lh

)2

=
1

1+ω pe
2/k2c2

[

1+
cos2 θ kB

1+ω pe
2/k2c2

]

(25)

where this equation makes no assumption about the magnitudeω pe
2/k2c2.

Bingham et al. [2002] showed that an initial ion ring distribution given by:

f lh

(

V ‖,V⊥
)

=
nci

(2π)3/2V T ci
3

e
− 1

2V T ci2
(V ‖

2+V⊥2)
+

nir

(2π)2V irV T ci
2 e

− 1
2V T ci2

[V ‖
2+(V⊥2−V ir

2)]
(26)

where VT ci is the ion core thermal speed, Vir is the ion ring speed, and nci(nir) is the ion core(ring) number density, can
excite waves in the LH frequency range. The frequency resulting from this distribution is given by:

ω = ω lh

[

1+
1
2

k2η2+
me

2Mi

(

k‖

k⊥

)2

−
(

ω pe√
2kc

)2( ω pe
2

ω pe
2+Ωce

2

)

]

(27)

whereω lh is given by:

ω lh
2 =

(ΩceΩci)
2+(ω piΩce)

2

ω pe
2+Ωce

2 (28a)

=

(

ω piΩce

ω pe

)2
[

ω pe
2

Ωce
2

1+
(

ω piΩce/ω pe
2
)2

1+(ω pe/Ωce)
2

]

(28b)

= ω pi
2

[

1+
(

ω piΩce/ω pe
2
)2

1+(ω pe/Ωce)
2

]

(28c)

≈
(

ω pi

1+(ω pe/Ωce)
2

)2

(28d)

where the Equation 28d came from the approximation thatω pi
2Ωce

2/ω pe
4 ≪ 1. Theη-term in Equation 27 is given by:

η =

[

3T i

ω lh
2Mi

+

(

2T e

Ωce
2me

)

ω pe
2

ω pe
2+Ωpe

2

]1/2

(29)

where Te(Ti) is the electron(ion) temperature. Thus, the 1/2 k2 η2 term in Equation 27 is the thermal correction and the
last term is the EM correction. Resonance occurs atω = k · V ir and the free energy associated with the ion ring feeds
energy into the electrons. This is accomplished when the LHWsget concentrated into localized cavity structures by the
modulational instability. The result is that the perpendicular ion energy gets transferred to the parallel electron energy.

4 Lower Hybrid Wave Literature
4.1 Marsch and Chang, [1983] and [1982]

Marsch and Chang [1983] andMarsch and Chang [1982] examined EMLHWs in the solar wind. They found the
waves to have frequencies of fci ≪ f ≪ fce, they dissipate their wave energy through Landau interaction with the ions
producing perpendicular ion heating, they propagate very obliquely to the field within a cone defined by k‖/k⊥ ≤ 1/5 and
k‖/k⊥ ≥ VTi,⊥/VTe,‖, and are thought to be driven unstable by the solar wind electron heat flux.

4.2 Zhang and Matsumoto, [1998]
Zhang and Matsumoto [1998] examined magnetic noise bursts (MNBs), using Geotail and Imp 8 spacecraft, near

an IP shock on February 21, 1994. The plasma wave instruments(PWIs) onboard Geotail provide both waveform and
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dynamic spectral data. The waveform data is sampled at∼12 kHz(∼0.083 ms resolution) for three B-field and two E-field
components. The sweep frequency analyzer (SFA) is used to get the local plasma frequency. The IP shock arrives at Imp
8 at roughly 08:57 UT and at Geotail at roughly 09:03 UT.

Upstream of the IP shock, the MNBs are primarily created by waves with f< 50 Hz andθ kB ∼ 9◦(171◦). Using the
electric field data, the waves are found to haveθ kB > 90◦, thus they propagate anti-parallel to the magnetic field. The
waves are RH-polarized with respect toBo but LH-polarized with respect tok, thus they are whistler mode waves. They
also compare the phase speed (cold plasma dispersion, Vwhistler) to theE × B speed (VE/B) finding that Vwhistler ∼ VE/B >
Vsw. The phase speed exceeding the solar wind speed is importantto confirm that Doppler effects are not reversing the
polarization.

Downstream of the shock, there are two types of MNBs which they call: TypeA and TypeB. TypeA MNBs have f<
50 and are composed of two types of waves, a longitudinal and transverse component.

1. Longitudinal ⇒ Whistlers

(a) f∼ f lh

(b) θ kB ∼ 10◦ - 60◦

(c) RH-polarized

(d) Vwhistler ∼ VE/B

2. Transverse⇒ LHWs

(a) fci ≪ f . f lh

(b) θ kB ∼ 85◦ - 90◦

(c) RH-polarized

(d) Vwhistler ≪ VE/B

TypeB have f< 50 Hz and f& 100 Hz (well separated in frequency).

1. Waves with f< 50 Hz⇒ LHWs

(a) f∼ 10-20 Hz

(b) θ kB ∼ 85◦ - 90◦

(c) Both RH and LH-polarized

(d) Vwhistler ≪ VE/B

2. Waves with f& 100 Hz⇒ Whistlers

(a) f∼ 80-200 Hz

(b) θ kB . 35◦

(c) RH-polarized

(d) Vwhistler ∼ VE/B

The wave amplitudes were∼0.2-0.6 nT peak-to-peak for the whistler-like waves and∼1.5 nT.

4.3 Bell and Ngo, [1990]
Bell and Ngo [1990] derived analytical expressions for the consequences of a single normal mode scattering due to a

discontinuity in a cold uniform plasma. There are four possible modes. For an incident whistler wave, two of the excited
modes are quasi-electrostatic (QES) LHWs with shortλ .

Assume a whistler wave is incident on a discontinuity in density with N i,2 6= Ni,1 and the index of refraction is given by
n(θ inc) and we know the index of refraction parallel to a boundary inthe YZ-plane is nzi = n(θ inc) cosθ inc, and by Snell’s
law nz must be conserved across the boundary.

The line nz = nzi cuts through the surface ofn at four points. The wave normal angles associated with thesepoints
define four normal modes which are solutions to Maxwell’s equations in each region. Thus, each of the four possible
solutions represent a propagating whistler mode wave. Two of the solutions lie near the resonance cone where n(θ ) → ∞,
which represent the QES LHWs of relatively short wavelength.The LHWs havek × Bo ≈ 0 while the EM whistlers have
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k · Bo ≈ 0.
If we assume an EM whistler mode is incident on a density irregularity (width⊥-Bo ≪ wavelength of incident wave)

of length∆L lies alongBo, we find that two QES LHWs are produced on either side of the density irregularity propagating
at a small angleδ with respect toBo. Thus, the group velocities of the QES LHWs are given byVg,ES = V‖ b̂o + V⊥ [(n̂
× b̂o) × n̂], wheren̂ is the vector normal to the density irregularity, V‖ = Vg,ES cosδ , and V⊥ = Vg,ES sinδ . Note that the
wave vectors,kES, of the QES LHWs are nearly orthogonal toVg,ES, thus they have a significant component along ˆn. Of
course, this is specific to the case whereBo · n̂ ≈ 0.

They arrive at a general solution for the index of refractionalong the x-direction (parallel to the normal here) andBo

at angleχ with respect to density irregularity given by:

α4nx
4+α3nx

3+α2nx
2+α1nx +α0 = 0 (30)

where theα i terms are given by:

α4 = Scos2 χ +Psin2 χ (31a)

α3 = (P−S)nz sin2χ (31b)

α2 = (P+S)nz
2+
[

S
(

1+cos2 χ
)

+Psin2 χ
]

ny
2−RLcos2 χ −PS(1+sin2 χ) (31c)

α1 = (nz sin2χ)
[

(P−S)
(

ny
2+nz

2)+RL−PS
]

(31d)

α0 = S
(

ny
2+nz

2)(ny
2+nz

2sin2 χ
)

+Pnz
2(ny

2+nz
2)cos2 χ

−PS
[

ny
2+nz

2(1+cos2 χ
)]

+PRL−RL
(

ny
2+nz

2sin2 χ
)

(31e)

where S, D, P, R, and L are defined by Equations 1a through 1e. Inthe smallχ limit, the roots of Equation 30 can be
simplified down to:

nx
ES ≈ −α3±

√

α3
2−4α4α2

2α4
(32a)

nx
WM ≈ −α1±

√

α1
2−4α2α0

2α2
(32b)

where the superscriptES(WM) refers to the QES LHWs(EM whistlers). We can see that whenever |nx| ≫ |nz|, then|(k̂ ×
E) × k̂| ≪ |(k̂ · E)|.
4.4 Cairns and McMillan, [2005]

Cairns and McMillan [2005] examined LHWs driven by LHDI finding that they could cause perpendicular ion heating
and parallel electron heating of the high energy tail because they haveω/k‖ ≫ ω/k⊥. The LHDI, which in the presence
of strong plasma gradients, acts like a fluid instability excited through the coupling of a LHW and a drift wave [Davidson
and Gladd, 1975;Huba et al., 1978]. When the gradients are weak, the LHDI is a kinetic instability driven by a resonance
between ions and a drift wave. When in the presence of a finite plasmaβ , the LHDI exists as an ES and electromagnetic
mode [Davidson and Gladd, 1975;Huba et al., 1978]. The growth rate of the LHDI peaks at kρ e ≈ 1, for a broad range
of frequencies near flh [Davidson and Gladd, 1975;Cairns and McMillan, 2005]. The mode is strongly unstable when
the magnetic field gradient scale lenght, LB, is comparable toρ i. The LHDI produces strong anomalous resistivity due
to the wave’s electric fields,δE⊥, perpendicular to the ambient magnetic field,Bo, which create (δE⊥ × Bo)-drifts that
transport particles acrossBo. Thus, the LHDI causes cross-field diffusion which is an increase in entropy, thus irreversible
and important for energy dissipation [Coroniti, 1985].

4.5 Walker et al., [2008]
Walker et al. [2008] used Cluster electric field measurements with the phase differencing technique at the terrestrial

bow shock to investigate lower hybrid waves. A phase difference of zero implies linear polarization while a phase dif-
ference of±π/2 implies circular polarization. Wavelet spectrograms show significant enhancement in power just above
the lower hybrid resonance frequency, flh = (fce fci)1/2. They define any wave with circular polarization as whistlermode
waves. One shoule note, however, that in the limit of large k⊥, LHWs are on the same branch of the dispersion relation as
whistler waves.

The amplitude of the lower-hybrid-like waves were∼1-3 mV/m and the whistler-like modes were of similar magni-
tude.
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4.6 Verdon et al., [2009a]
Verdon et al. [2009b] examined rederived the dispersion relation for LHWswhen considering warm plasma effects,

EM effects, andω pe/Ωce ¿ 1. They found that as Ti increases, the LHW dispersion breaks up into a series of ion Bernstein
waves. When this occurs, there are no modes near exact harmonics of Ωci. This is in agreement with previous studies
that perturbed the ES limit of the LHW dispersion by including ion magnetization effects and only ion thermal effects.
Feng et al. [1992] found similar results for IAWs propagating at largeθ kB; the mode breaks up into a series of ion
Bernstein modes at low k-values. The regions where numerical solutions forℜ(ω) become ion Bernstein modes is where
| ℑ(ω)/ℜ(ω)| (≈0.005) is larger than regions where the LH mode is continuous, which is also where the validity of weak
damping becomes questionable.

They compare a number of dispersion relations, including:

ω2 = ω lh
2
(

1+
Mi

me
cos2 θ kB

)

(33a)

(

ω
ω lh

)2

= 1+
Mi

me
cos2 θ kB +3

[

T i

T e
+

1
4

](

kV Te

Ωce

)2

(33b)

(

ω
ω lh

)2

=
1

1+ω pe
2/(kc)2

[

1+
Mi

me

(

cos2 θ kB

1+ω pe
2/(kc)2

)]

(33c)

(

ω
ω lh

)2

= 1+
Mi

2me
cos2 θ kB −

ω pe
2

2k2c2 +

[

3T i

2T e
+1

](

kV Te

Ωce

)2

(33d)

where Equation 33a refers to the LH dispersion relation in a cold uniform plasma with only ES oscillations, Equation 33b
refers to the LH dispersion relation with warm plasma effects added but the oscillations are assumed to be longitudinal,
Equation 33c refers to the LH dispersion relation for a cold plasma but EM effects are included, and Equation 33d refers
to the LH dispersion relation includes both EM and warm plasma effects. Their new analytical expression is given by:

ω2 =
ω lh

2

1+ω pe
2/(kc)2

[

1+
Mi

me

(

cos2 θ kB

1+ω pe
2/(kc)2

)

+W

(

kV Te

Ωce

)2
]

(34a)

W = 3
T i

T e

(

1+
ω pe

2

k2c2

)

+
ω pe

2

2k2c2 +
9
2
− 15+21ω pe

2/(kc)2

4(1+ω pe
2/(kc)2)

−
[

3
ω pe

2

k2c2 +
1−6ω pe

2/(kc)2

4(1+ω pe
2/(kc)2)

]

Mi

me
cos2 θ kB+

3

(

1+
ω pe

2

k2c2

)[

Mi/me cos2 θ kB +ω pe
2/(kc)2−T i/T e

1+ω pe
2/(kc)2Mi/me cos2 θ kB

]

Mi

me
cos2 θ kB

(34b)

where in the limit of smallω pe
2/k2c2 and small (Mi/me)cos2 θ kB, Equation 34a reduces to:

(

ω
ω lh

)2

= 1+
Mi

2me
cos2 θ kB −

ω pe
2

2k2c2 +
3
2

[

T i

T e
+1

](

kV Te

Ωce

)2

(35)

which differs from Equation 33d only in the last term. In every equation,Verdon et al. [2009b] has assumedω lh of the
form described by Equation 20 in the limit thatω pi

2 ≫ ω ci
2.
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