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1 Cold Plasma Definitions
If we consider the case of a cold uniform plasma with onlydin@aves, then we have frogix [1962]:
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whereQ is the gyrofrequency of specigsw,s is the plasma frequency of specgesandw is the wave frequency. The
dispersion relation, I, w), can be simplified down if we assume the index of refractims parallel to the wave vector,
k. Then we have:
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where the term# andB are defined by:

A= Ssir? 6+ Pcos 6 (3a)
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which has the unique solutions of:

B+F
2 _
whereF is defined by:
F = (RL—PS)?sir? 6+ 4P’D?cos 6 (5)

where we can see th&tis always real. Since the terrdsandB are real, then we can say th&tmust either be purely
real (rf > 0) or purely imaginary (A< 0). If n? < 0, then the wave becomes evanesceatif damps out).

2 Turning Points

If we consider the case of an inhomogeneous plasma withmdigperelations of the formi? + ¢ = 0, wherex is the
propagation constant, b and ¢ are functions of density, etagfield strength, and positioijx, 1962]. If the variation
of plasma parameters is sufficiently slow, then we can argatedB,/dx(dN/dx) < k«Bo(k«N;). If we also assume that the
scalar factor in the scalar wave equation (correspondsetbdmogeneous plasma relation given ¢ b- ¢ = 0), then
we can say: ,
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wherek? = -c/b and nowk = k(x). When we have the following two conditions:
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we can find an approximate solution for E to Equation 6 usiegtiKB approximation of the form:
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where G is some constant. In regions where b(x) or c&), then the variation ix? is rapid and Equation 8 is not a
valid solution to Equation 6. To deal with this issue, we cppraximate Equation 6 in the vicinity of c(x} O[b(x) = 0]
using the linear[singular] turning point equation given by
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wherev, U, ande are positive real constants and Equation 9a(Equation @ibgsents the linear(singular) turning point
equation. The solution to Equation 9a is given by-EE, 4+ E_ and Equation 9b is given by £ E; + E,, where the Es
are given by:
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where A and B, are constants], andY, are Bessel functions of the first and second kind, respégtized|, andK,
are the modified Bessel functions of the first and second kivehdy:
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and the termg; are given by:
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The above solutions join smoothly to the following solus@t the turning point. For simplicity, let us define the faling:
Bi= (x—X+ie)/? (13)

which changes Equations 12a and 12b to:
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The solutions for Equations 9a and 9b at the turning point are
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where the sign in Equation 15c is chosen based upon the sigti.ef + for € > 0).
If we consider a more complex wave equation of the form:

ak,* + (O[b] +i0[b)) kx> +¢c=0 (16)
where a, b, and c are constants. Reflection and/or absogatur at the critical layer if the following is satisfied:

O[b] > 4Jac| = Absorption (17a)
Ob] < 4lac| = Reflection (17b)

which in practical application, Equation 17a looks like thBowing:
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where we have assumed J= T, ; andf3, is the perpendicular plasma beta gids defined by:
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and whereawy;, is given by:
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3 Lower Hybrid Wave Definitions

In general, when deriving the dispersion relation for lofwebrid waves (LHWS), one assumes that < w < Qce
< wpe and that co%0,s < m/M,. Thus, one finds that k, < me/M; < 1. We also know that LHWs can resonantly
interact with unmagnetized ionk (V;) and magnetized electrons, . ) at the same frequeney [Verdon et al., 2009a].
From this, we can see that LHWs can transfer perpendiculaggifiem the ions to parallel energy for the electrons, or
vice versa. In either case, the result can be directed @etin) or random (heating) energization.

In the cold plasma limit, the ES dispersion relation for LHWgiven by:
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wherew,, is defined by:
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and we know the following:
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which leads to the final cold plasma ES approximation of:
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Whenw ~ wy,, the ions are unmagnetized and free to mavB, while electrons must movigB,. If dE is ~ L-B,, then
the electron response time is greatly increased and LHiegs® can only occur when the electron response time is less
than or comparable to the ion response time, of 8gs< m./M;. Notice that from Equation 21, the cold plasma ES LHW
does not have a group velocity. However, when warm plasnegtsfbr EM effects are added, the mode can propagate.

In the cold plasma limit, the EM dispersion relation for LHVggjiven by:
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where this equation makes no assumption about the magriidék>c?.
Bingham et al. [2002] showed that an initial ion ring distribution given:by
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where V4 is the ion core thermal speed;, V6 the ion ring speed, and;m;) is the ion core(ring) number density, can
excite waves in the LH frequency range. The frequency rieguftom this distribution is given by:
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where the Equation 28d came from the approximation @#Q..2/ wy* < 1. Then-term in Equation 27 is given by:
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where T(T) is the electron(ion) temperature. Thus, the 192)R term in Equation 27 is the thermal correction and the
last term is the EM correction. Resonance occur@ at k - V;, and the free energy associated with the ion ring feeds
energy into the electrons. This is accomplished when the Ligé{soncentrated into localized cavity structures by the
modulational instability. The result is that the perpentiicion energy gets transferred to the parallel electrargn

4 Lower Hybrid Wave Literature

4.1 Marsch and Chang, [1983] and [1982]

Marsch and Chang [1983] andMarsch and Chang [1982] examined EMLHWSs in the solar wind. They found the
waves to have frequencies ¢f & f <« fe, they dissipate their wave energy through Landau inteyactiith the ions
producing perpendicular ion heating, they propagate vbhygoely to the field within a cone defined by/k, < 1/5 and
K/K, > Vri V1, and are thought to be driven unstable by the solar windreletteat flux.

4.2 Zhang and Matsumoto, [1998]
Zhang and Matsumoto [1998] examined magnetic noise bursts (MNBSs), using Geatad Imp 8 spacecraft, near
an IP shock on February 21, 1994. The plasma wave instruniieWi$s) onboard Geotail provide both waveform and



dynamic spectral data. The waveform data is sampledlatkHz(~0.083 ms resolution) for three B-field and two E-field
components. The sweep frequency analyzer (SFA) is used tbgcal plasma frequency. The IP shock arrives at Imp
8 at roughly 08:57 UT and at Geotail at roughly 09:03 UT.

Upstream of the IP shock, the MNBs are primarily created byesavith f< 50 Hz andf,g ~ 9°(171°). Using the
electric field data, the waves are found to héyg > 90°, thus they propagate anti-parallel to the magnetic fielde Th
waves are RH-polarized with respectBg but LH-polarized with respect th, thus they are whistler mode waves. They
also compare the phase speed (cold plasma dispersjpe«Yto theE x B speed () finding that V{ygier ~ Vg >
Va. The phase speed exceeding the solar wind speed is imptotaabfirm that Doppler effects are not reversing the
polarization.

Downstream of the shock, there are two types of MNBs whick tdadl: TypeA and TypeB. TypeA MNBs have f<
50 and are composed of two types of waves, a longitudinalr@mdterse component.

1. Longitudinal = Whistlers

(@ f~fi,

(b) 6, ~ 10° - 60°

(c) RH-polarized

(d) Vunisie ~ VE/B
2. Transverse= LHWs

(@ fo < f<f,

(b) 6, ~ 85 -9C°
(c) RH-polarized
(d) Vinsie < Ves

TypeB have f< 50 Hz and = 100 Hz (well separated in frequency).
1. Waves with f < 50 Hz= LHWs

(a) f~10-20 Hz

(b) 6,5 ~ 85 - 9C°

(c) Both RH and LH-polarized
(d) Vinsie < Vese

2. Waves with f > 100 Hz=- Whistlers

(a) f~ 80-200 Hz
(b) 6is < 35°

(c) RH-polarized
(d) Vinister ~ VE/B

The wave amplitudes were0.2-0.6 nT peak-to-peak for the whistler-like waves asid5 nT.

4.3 Bell and Ngo, [1990]

Bell and Ngo [1990] derived analytical expressions for the consequenta single normal mode scattering due to a
discontinuity in a cold uniform plasma. There are four polesmodes. For an incident whistler wave, two of the excited
modes are quasi-electrostatic (QES) LHWSs with siort

Assume a whistler wave is incident on a discontinuity in dgnsith N; , # N;; and the index of refraction is given by
n(6;,.) and we know the index of refraction parallel to a boundarthenYZ-plane is n = n(6;,;) cosBi.., and by Snell's
law n, must be conserved across the boundary.

The line n = n; cuts through the surface ofat four points. The wave normal angles associated with thesds
define four normal modes which are solutions to Maxwell’'satuns in each region. Thus, each of the four possible
solutions represent a propagating whistler mode wave. Twlecsolutions lie near the resonance cone whef@ af o,
which represent the QES LHWs of relatively short wavelengtie LHWs havek x B, ~ 0 while the EM whistlers have



k-B,~0.

If we assume an EM whistler mode is incident on a density idagty (width L-B, < wavelength of incident wave)
of lengthAL lies alongB,, we find that two QES LHWSs are produced on either side of theigenggularity propagating
at a small anglé with respect td3,. Thus, the group velocities of the QES LHWSs are giverMgys =V, bo + V., [(A
X Bo) x ], whereriis the vector normal to the density irregularity, ¥ Vgyes €0sd, and V, = Vygs sind. Note that the
wave vectorskes, of the QES LHWSs are nearly orthogonal\fges, thus they have a significant component alongf
course, this is specific to the case whBge A = 0.

They arrive at a general solution for the index of refractidong the x-direction (parallel to the normal here) &ad
at angley with respect to density irregularity given by:

and + asnd + anl+ane+ oo =0 (30)

where thea; terms are given by:
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where S, D, P, R, and L are defined by Equations 1a through lthelamally limit, the roots of Equation 30 can be
simplified down to:
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where the superscrigSWM) refers to the QES LHWs(EM whistlers). We can see that wherjeves> |n;|, then|(R X
E) x k| < |(k- E)|.
4.4 Cairns and McMillan, [2005]

Cairnsand McMillan [2005] examined LHWSs driven by LHDI finding that they could sawperpendicular ion heating
and parallel electron heating of the high energy tail beedbey havew/k, > w/k,. The LHDI, which in the presence
of strong plasma gradients, acts like a fluid instabilityiedtthrough the coupling of a LHW and a drift wav@dvidson
and Gladd, 1975;Huba et al., 1978]. When the gradients are weak, the LHDI is a kineticbiity driven by a resonance
between ions and a drift wave. When in the presence of a firmtnm3, the LHDI exists as an ES and electromagnetic
mode Pavidson and Gladd, 1975;Huba et al., 1978]. The growth rate of the LHDI peaks aid~ 1, for a broad range
of frequencies neaf,f[Davidson and Gladd, 1975;Cairns and McMillan, 2005]. The mode is strongly unstable when
the magnetic field gradient scale lenghg, is comparable t@;. The LHDI produces strong anomalous resistivity due
to the wave'’s electric field)E |, perpendicular to the ambient magnetic fieBd, which create JE, x B,)-drifts that
transport particles acro8s. Thus, the LHDI causes cross-field diffusion which is anéase in entropy, thus irreversible
and important for energy dissipatio@groniti, 1985].

4.5 Walker et al., [2008]

Walker et al. [2008] used Cluster electric field measurements with thesphiifferencing technique at the terrestrial
bow shock to investigate lower hybrid waves. A phase diffeesof zero implies linear polarization while a phase dif-
ference oft /2 implies circular polarization. Wavelet spectrogramevglsignificant enhancement in power just above
the lower hybrid resonance frequenay,# (f fs)%/2. They define any wave with circular polarization as whistherde
waves. One shoule note, however, that in the limit of large lkdWs are on the same branch of the dispersion relation as
whistler waves.

The amplitude of the lower-hybrid-like waves werd -3 mV/m and the whistler-like modes were of similar magni-
tude.



4.6 Verdon et al., [2009a]

\erdon et al. [2009b] examined rederived the dispersion relation for LHW®n considering warm plasma effects,
EM effects, andwp/Qce ¢, 1. They found that as increases, the LHW dispersion breaks up into a series of @nd3ein
waves. When this occurs, there are no modes near exact hasvaif);. This is in agreement with previous studies
that perturbed the ES limit of the LHW dispersion by incluglion magnetization effects and only ion thermal effects.
Feng et al. [1992] found similar results for IAWs propagating at larfg; the mode breaks up into a series of ion
Bernstein modes at low k-values. The regions where numaadations for(](w) become ion Bernstein modes is where

| O(w)/d(w)| (0.005) is larger than regions where the LH mode is continugbgch is also where the validity of weak
damping becomes questionable.

They compare a number of dispersion relations, including:
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where Equation 33a refers to the LH dispersion relation iald aniform plasma with only ES oscillations, Equation 33b
refers to the LH dispersion relation with warm plasma effeadded but the oscillations are assumed to be longitudinal,
Equation 33c refers to the LH dispersion relation for a cdsma but EM effects are included, and Equation 33d refers
to the LH dispersion relation includes both EM and warm plagffiects. Their new analytical expression is given by:
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where in the limit of smaltv,?/k?c? and small (M/me)cos’ 8,s, Equation 34a reduces to:
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which differs from Equation 33d only in the last term. In gvequation Verdon et al. [2009b] has assumed,;, of the
form described by Equation 20 in the limit that® > wq?.
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