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1 Conversion Factors

KM gV Y (1)
S m
fpe 22 8.98y/ne(cm3) kHz (2)
fee = 2.80x 10°B(G) Hz = 28.0B(nT) Hz (3)
~ / Te(eV) B VTe(eV)
lge ™ 2.38- 2 © cm =2.38x 10° BInT) cm (4)
) 3
o 2221/ M) by f— mmg) (5)
fi =~ 1.52x 1&2? Hz = omszw Hz (6)
~ VHTi(eV) 7/ HTi(eV)
rgi = 1.02x 107 ZB(G) cm =1.02x 10 ZBnT) cm (7)
~ Te(eV)
Ape 22 7.43x 107 relemd) cm (8)
Vre 2 4.19x 107/ Te(eV) cm/s 9)
Vyi & 9.79x 10° T‘(SV) cmis (10)
Wpe sy/Ne(Cms) _ V/ne(cm 3)
. = 3.21x 10° BG) 3.21x 107 B(nT) (1)
N _n(em3)T(eV) _n(cm3)T(eV)
B =~ 4.03x 10 —Bor - 4.03x 10 TBMTE (12)



2 General Mathematical Rules
2.1 The Dirac Delta Function
Definition = a mathematicallimproperfunction having the properties :
d(x-a) =0forx#a
[ 5(x - a) dx = 1 (f region includes x = a which we’ll assume from here on, othiee it is zerd
J dx f(x) 6(x - a) = f(a)
J dxf(x) &' (x - a) =-f'(a)

a > w nNoE

The delta function transforms according to the rule sadaquation 20, assuming f(x) only has simple zeros
located at x = X

o

In more than one dimension, the delta function can beewritis seen in Equation 21

7. The delta function has the inverse units of whatever tlia denction happens to be a functionef the delta
function in Equation 21 has the units of an inverse volume

8. One can expand a delta function in a Taylor series acaptdithe rules defined in Equations (23a - 23d)

9. Typically one assumes tha(1/r) = 0, assuming # 0 and its volume integral is equal tor#4One can then use
the properties of the delta function to s@y(1/r) = -4t 5(x). A more general version can be seen in Equation

22.
) = 7 k¢
5(X—x) = ZH/_mdké (13)
1 / ' /
23 (k=K) :/O dppdy (kp)dy (Kp) (14)
where J areBessel Functionand Rg v} > -1.
d"o(X —x) d"
3(x)
o(xa) = ——= 16
o) = S 16)
o (X x—d5x’ X) = dch’x 17
(X = Do) = La(x )
d
5(>(—x):&@(>(—x) (18)
where®(x' - x) is theTheta Functiorwhich has the properties:
e(%_x):{o =) <0, (19)
1 if(x-x)>0.
o(f(x) = > %6(x—xi) [x; are the zeros of f(x)] (20)
™ las
d(x—X)=08(x1—%1) S (x2—X3) 3 (Xa— X3) (21)
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02 (%) = —4md(x— X)) (22)

IX — X’
fiys =Ti+Ts (23a)
&l o4 (23b)
Fiys]
O(F—Ti5) = O0(M—Ti—Ts) (23c)
~O(F—F)—TFy- D?(a(r—m) (23d)

2.2 \ector and Tensor Calculus

1. Assume that the vectdr and the scalargy and g, are well behaved vector functions
2. V = 3D volume with volume elementd
3. S=is aclosed 2D surface bounding voluiMgwith area elemerda

4. n = unit outwardnormal vector at surface elemetd

/d3xD-A:/dan-A (24a)
\Y S
/d3x Dw:/danw (24b)
v :
/d3xD><A:/dan><A (24c)
\Y% S
/\;dg’x A+ (0x (OxB) =B (0x (OxA))] :/S;dan- Bx (0xA)-Ax(0xB)] (24d)
/Vd3x ((pD2w+qu- Dt,u) :/Sda(p(n-Dt,U) (Green’s ® Identity) (24e)

/d3x ((pDZL,U—l— L,Uchp> = /Sda(p((pDL/J— Og) (Green's Theorem) (24f)
v

1. In the following equations, we defitfg= open surface
2. C = contour bounding the open surface S, with line elemént d

3. n = normal to the surfac& with the direction defined by theght-hand-screw rulen relation to the direction
of dl (i.e. the line integral around conto@)

/Sda (D X A) ‘n= %CA'dI (Stokes’s Theorem) (25a)

/;da(n x0)y = fcwdl (25b)
/Sda(nxm)xAzfcdle (25¢)
/Sdan-(Dfng):%cdgf:—jédfg (25d)

1. In the following equations, we defike= coordinate of some point with respect to some origin
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2. r= the magnitude ox (= |x|)

3. k = x/r = unit radial vector

4. f(r) = a well-behaved function of r
5. a= an arbitrary vector

6. L = the angular momentum operator defined in Equation 26g

a 0)ni(n) =52 a-n(an)] en(an) G

a-(bxc)=b-(cxa)=c-(axb)
ax (bxc)=(a-c)b—(a-b)c
(axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c)
OxOw=0
0-(Oxa) =0
Ox (Oxa)=0(0-a) - 0%
0-(ya) =a-O¢+yO-a

Ox (pa) =0y xa+yOxa
O(a-b) = (a-O)b+ (b-O)a+ax (Oxb)+bx (Oxa)
b) =b-(Oxa)—a- (0xb)
Ox (axb)=a(0-b)—b(0-a)+ (b-O)a—(a-O)b
(Ob)-a=ax (Oxb)+(a-0)b
D*a=0(0-a) —-Ox (Oxa)

2 1
" hihzhs

h—lc?ul

duz

h—zaUQ

5U3

h—3(9U3

c?ul

1. In the following equationgA = unit surface area
2. dV = unit volume

3. d¥* = 1%t Fundamental Form of a Line Element or Geodesic Equationes Ftotion
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0 0m35)+_a<mm¢9>+a cmza>]

(26a)
(26b)

(26¢)

(26d)

(26e)
(26f)

(269)

(27a)
(27b)
(27¢)
(27d)
(27e)
(271)
(279)
(27h)
271)
(27))
(27k)
271

(27m)

(27n)

(28)



Table 1: Scale factors of the Laplacian

Coord. Up | Up | U3 hy hy hs
Cartesian X|y| z 1 1 1
Cylindrical | r | @ | z 1 r 1
Spherical z| 0| o 1 r rsing
Oblate Sph.| € | n | @ a\/sinhzf +siren a\/sinhzf +sir’n | acost cosn
‘Elliptic Cyl. ‘ u ‘ v ‘ z ‘ ay/sinPPu+ sinfv ‘ ay/sinffu+ sirfv ‘ 1

4. h = scale factors in the coordinate system metric

5. guv = coordinate system metric

6. '}, = Christoffel Symbol of the Second Kind

2
D[ OX
hi = /0i = gmga>

0ij = i g (Diagonal Metric)

ds’ = gud§ + ... + gnnd)§
= h3d3 + ...+ h2dx

DPp=g"Y0,0,0—THd, 0
_ guvz (d_(p> _rH

A —

O

dea

oy

axt

HY'= axtaxv 97

99
0y

1
= ég)\a [avgau +0u09va — OaQuv

— ga)\ [/JV,A]

Mauv=0forA #u#v

v =

199,

C 2 9

forA #£v

10
Caur =T pax = 5%

MVap=0forA #u#v

1 dgy,
v [
M= 2y X forA #£v
10 121In
r)\)\“:r)\ 9 _ Loingix

HA T 200, OxH 2 oxH

(29)
(30)

(31a)
(31b)

(32a)
(32b)

(33a)

(33b)

(33¢)

(34a)
(34b)

(34¢)
(34d)
(34e)

(341)



dr? = —gyydx*dx’ (35)
OuVY = VY +1Y v (36)
Let x* = xH(A) then:

42 B dx®
X" OXOXT
az e grar =0 (37)

3 Tricks and Useful Techniques

3.1 Rotating Vectors

Let's assume we have two arbitrary vectagksandB. Let their unit vectors be denoted b;yaﬁdﬁ. If we want to
find the parts of vectof which are parallel and perpendicularBowe can do a couple of things:

1. We can findA; andA with dot and cross products, but leave the the resultanbreat the original coordinate
basis

2. We can findA | andA by rotating both vectors to a new coordinate basis wBeie now the Z'-Axis andA’
is in the X’Z'-Plane.

The method to deal with the first method is the following: I)sEfind the unit vectors in the typical manner:

a= % (382)
b= ’% , (38h)
2) then we find the parallel vector by the following method:
a = (a' b> b = |al|a| cosBanb (39a)
aLz<b><a>><a:a—<b-a>b, (39b)

which only need to be multiplied by the magnitude of the ve&gto be turned back into vectors. It should be noted
that these two vectors andA |, satisfy the following condition:

IA| = \/(A|>2+ (AL)Z = \l@ (40)

The second method to find these vectors is by constructingrixmanich can rotate both vectors into a new coordinate
system wherd’ is parallel to the new Z’-Axis an@’ is in the X’Z'-Plane. To do this, we start with the unit vec$o
again. The first thing we do is define the following two vectors

c=bxa (41a)
d=cxb (41b)
which we use to construct the following matrix:
d d ds
R=]|c ¢ c3 (42)
a; ay ag



The original vectors can now be rotated into a new coordiggisgem. Let's consider an example for illustrative
purposes. Let the following be true:

A ={0.2,03,04} (43a)
B={0.1,05,0.7} (43b)
|A| = 0.5385165215 (43c)
|B| = 0.8660253882 (43d)
a={0.371390.557090.74278 (43e)
b = {0.115470.577350.80829 (43f)
c={-0.021440.21442-0.15010} (439)

d = {0.259971.30385x 108, -0.03714} (43h)

where the Y-component af is a consequence of rounding errors, which I'll show turntouactually matter. Thus

our matrix is:
0.25997 13038x 108 —0.03714

R=| —002144 021442 —0.15010 (44)
0.11547 057735 080829

which produces the following new vectors:

a = {0.06897,—1.84871>< 10*9,0.964901} (45a)

b’ = {-1.87482x 10 °,-7.16156x 10 °,1.00000; . (45b)
One can see that and b’ are not normalized, nor are they what @epectedhem to be. Meaning, | claimed thiat
should be PURELY in the Z'-direction, but this has small,tBnvalues in the X'Y’-Plane. Before we complain too
much about this atrocity, let's normalize the unit vectovhjch makes them now:

a = {0.07129-1.91108x 10~°,0.99746} (46a)

b’ = {-1.87482x 10 °,—7.16156x 10 °,1.00000; . (46b)
Recall that | claimed thesamallrounding errors made a difference in your final answer, se ¢t back to our first
set of rotated unit vectors in Equations 45a and 45b andtiotely force thosesmallrounding errors to zero before

we renormalize the unit vectors. Let's define these new oseg and u’' to avoid confusion with our vectors in
Equations 46a and 46b, and they become (after renormalizing

w' = {0.071290.000000.99746} (47a)

u' = {0.0000Q 0.0000Q 1.00000} : (47b)

We now take the magnitudes of our original vectors and miylthmat by these unit vectors to get the new vectors:
Alxd =A" = {0.0383921—1.02915>< 10*9,0.537146} (48a)

B| b’ =B’ = {-1.62364x 10 °, —6.20209x 10 °,0.866025 (48b)

|A]xw =W’ = {0.03839210.000000.537146 (48c)

Blxu'=U = {0.0000Q 0.0000Q 0.866025} : (48d)

If we use double precision instead of single, our rotatiotrixé now:

0.25997347 —6.5919492«x 1017 —0.037139068
Rg= | —0.021442251 (1442251 —0.15009575 (49)
0.11547005 ®B7735027 (80829038



which produces the following new vectors (after normalaat

ajy = {0.07129230058(.6301944355& 10 '8,0.997455466614 (50a)
by = {—3.8811628891% 10 '#,1.4018063184k 10 #,1.00000000000) . (50b)

Again we step back and intentionally remove the roundingrerbefore renormalizing to get (keep the same names
this time):

ay= {0.07129230058,GD.OOOOOOOOOOO,CD.99745546661}1 (51a)
by = {0.00000000000,GD.OOOOOOOOOOO,CI.OOOOOOOOOOO}) . (51b)

4 Linear Algebra

Let <x> be defined as theample meanwvhich mathematically means:

N

1
== . 52
<X > N 2 Xi (52)

where N is the number of samples in your data set. Let us ddfefotiowing:
Xk = Xk— < X > (53)
which leads us to a matrix whose columns have a zero sample, me#ned as:
B— [)?122..5(”] . (54)
Thesample covariance matris thus defined by:

_ BBT

S= .
N-1

(59)

If we now define a vectorX, which varies over the set of observed vectors and denotedtlinates by;, then
the diagonal entrys;;j in Sis called the variance ofj. Thus,sj; measures thepreadof the values ok;. Thetotal
varianceis defined as:

{TotaIVarianC% =Tr [S] (56)

Thecovariance s; for i # j, is equal to zero wher andx; are uncorrelated.

4.1 Principle Component Analysis

The main goal here is to find an orthogomad n matrix, P = [uy ... up], such thatX = P Y, with the property
that the components of, y;, are uncorrelated and arranged in order of decreasingneariarlhis implies that each
individual observed vectoKy, goes to a newmame Y. This results in the following relationship:

Yie=P Xy =P X fork=1...,N. (57)
A direct result of thige-namingis that the covariance matrix fofy is:

S, =PTSP (58)



which forcesS; to be diagonal (sinc® is an orthogonal matrix). Now if we allol to be a diagonal matrix with
eigenvalues of5, A on the diagonal arranged so thlat > A, > ... A, > 0, then if P is an orthogonal matrix of
corresponding eigenvectors we have:
S=PDP’ (59a)
D=P'SP. (59D)
The eigenvectorgy;, of the covariance matrixs, are called therincipal componentsf the data. Théirst principal

componentus, is the eigenvector corresponding to the largest eigeaval$ and thesecond principal component
u», corresponds to the second largest eigenvalue and so oe.dflewc; to be entries ofi1, thenY = PT X gives:

Y1 = U] X = C1X1 + CoXa + ... + CnXn (60)

which means yis a linear combination of the original variables x. x,. One thing to note, the orthogonal change
of variables X = P Y, does NOT change the total variance of the data, or in othedsvo

{Total Varianceof p(} = {Total Varianceof y} (61a)
{Total Varianceof y} =Tr [D] (61b)
=A1+...+ A (61c)

= where the variance of is A;, andA;/Tr [S] measures the fraction of the total variace thabdplainedor captured
by yi. Thus ifu satisfiesy = u" X, then the variance of the valuesyofisX varies over the original datX;;, isu’ Su.

1. The maximum value af" Suoccurs forA; andu;
2. y» has a maximum variance among all variabjes u™ X that are uncorrelated witp

3. Likewise,y; has a maximum variance among all variables that are unateceivith BOTHy; andys.

4.2 Minimum Variance Analysis

MInimum variance analysis is the utilization of a properfyptane polarized linear electromagnetic waves which
allows one to assume that fluctuations in the electf€)(@nd magneticdB) fields are are in a plane orthogonal to the
direction of propagationRO Khrabrov and Sonnerupl998]. If the wave is truly a plane polarized wave, thendB
= 0, which is a linear approximation of the Maxwell equatiéh; B = 0. The analysis is performed by minimizing
the variance matrix of the magnetic field given by:

Su=((B,~ (8,)) (B~ (B))) (62)

where<B, > is the average of the"ecomponent of the magnetic field. We assuBeto be a non-degenerate matrix
with three distinct eigenvalueg,; < A, < A, and three corresponding eigenvectas,e,, €. Thus the minimum
variance eigenvalue and eigenvector Aseande;. The propagation direction is said to be aldagf one assumes
small isotropic noise and the conditign/A; > 10 is satisfied. Then the uncertainty in this direction isegiby
Kawano and Higuchj1995]:

N T VN
ok=+(8/y 5 T3 ) (63)
1 3 2 3

whereK is the number vectors used add;, the uncertainty in tha ; eigenvalue, is given by:

OAs=+A, (64)

(K-1)"



In general, the uncertainty @\ is given by:

223(A; — As)

OAi== K—1)

. (65)

Another useful quantity to know is the angle between thellao@ient magnetic field and the propagation direction,
B« This can be calculated in the typical manréks = cos™* (k- b), with associated uncertainties of:

Ashs
5ekB=i\/(K_l)(/\2_/\3)2. (66)

Khrabrov and Sonnerufl998] found analytical estimates to the error analysigatistical noise in a vector field
(i.e. B-field) with the application of minimum/maximum varianaasdysis. They consider two special cases of signal-
to-noise ratios: 1) large and 2) small, for arbitrary noisgrbutions.

1. The Ideal Case= small errors and isotropic Gaussian noise

2. For the ideal case, one can determimeertainty conesvith elliptic cross sections for all three eigenvectors:
X1,X2, X3, anduncertainty intervaldor all three eigenvaluesiy, A, A3

3. Note:Az < A2 < A1 by definition

4. Anisotropic Noise, No Signal:1) A3 ~ A, = Linearly Polarized IF A3 < A1 AND the non-fluctuating part
of the signal is negligibleife. only measuring noise due to wave packets which are broadbasdatially
unresolved), 2)\1 = A, = Circularly Polarized IF A3 < A»

5. Small Anisotropic Noise: If amplitude of noisex amplitude of signal, theiz can be said to be entirely due
to noise

6. Isotropic Gaussian Noise:Equations 71 and 72 implicitly assume isotropic Gaussiaseno

7. In Equation 85Aq@ ; = the angular standard deviation (radians) of thevéctor's &) direction towards/away
from the " vector’s ;) direction

8. TheVarianceof any quantity is defined as in Equation 69. The use of Minimfanance Analysis (MVA) on
magnetic fields derives from the Maxwell EquatidnB = 0. From this equation, one can convert the divergence
into a dot product between a vectat, and the B-field. If this vecton exists, the field does not vary along it.
Thus we say, B=n - B = constant! So we vary the B-field in each of it's componenttions and the variance
is described by Equation 73, wheresKnumber of measurements/vectors.

9. Rule of Thumbfor K < 50, REQUIREA,/A3 > 10, UNLESS one knowa priori that the noise is truly random,
which then implies that 1/K is a relevant, small parameter

10. The Variance Matrix: see Equation 74
11. Ensemble Average= (( )) = average over the ensemble of all realizations of data

12. Average of Data= < > = average of data in a given realization
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If we have a set of functions given by:

{f,-}:{f(x,-)} (67)

<f>=%§f(xj) (68a)
:%2f(<x>+ej) (68b)
= 1P T ety 1 ()3 (@7 (680)
1)+ S () (680)
wherea? is defined by:
=13 6wy (69)

N 2

thus, it can be shown that the fluctuations of two eigenvalineated as distinct and uncorrelated, have an the standard
deviation of their difference X - Aj), as:

o = ({ @)+ ({()7)) (70

where, ( )
N2\ 2A3(2Ai —Ag
<<(M') >> T (K-1 (71)
The uncertainty in the vectax; (The maximum variance direction.), is then given by:
A
Agj = ) 72
P \/<K—1><A1—A,-> (72)
if A2 < A1 AND A3 < A1
1 K 2 2
varB ) ==y [(B“‘) - <B>) -x] = <[(B<"> - <B>) -x] > (73)
K=1
My = (B - (8)) (8} - (B)")) ) = (38 5B} (74)

now replaceB® by B*® + 3b(K, whereB* = signal and5b¥) = noise. One should note that®, k=1, 2,... K
are the same in all realizations, while the K-offset noiseponentspb®), contain<b>, therefore are functions of all
K noise vectorsb®, k = 1, 2,... K, in the realization. By definition, the latter has the petp:

({543} =0 () =0 ™

which allows us to define the following:
5B® = 3B*® 4+ 5p® (76)

11



where

o8 W =g _ (B*) (77a)
3b® =p® — (b) (77b)
so that Equation 74 goes to:
(o858 = ( (8B, + 3b") (5B; ™ + 5b{¥) ) (78a)
— (58, (88" + b)) + (56 (8B;" + b)) (78b)
— (585B; ") + (385 ) + (36" 58] ) + (86 o0 ) =M . (78¢)

For the next step we have to realize that the following rulalg:

(] = {{[])). (79

If we take theensemble averagef our variance matrix, we get:
2 2
)=o)
| )

(80b)

s™M
VN
(o]
oy
g
3
(o]
vs]
.
3
+
T~
P
(o]
o
™
=y
~——
~—
N—
N——
N
\/
\/

(i)
- ([{(ooam)] o1
= (o)) (oot )]
([{(anas )] ) o{ (o))

which is highly simplified by realizing that the middle twon@s can be canceled when the ensemble average is taken
due to the properties assumed in Equation 75. The first tertheoR.H.S. is just defined as:

Vi = <{<<5B;<k>5sy<k>>>}> ©2)

which is the variance matrix of the nonfluctuating part offileéd. The final result is written as:

) )

12
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The second term on the R.H.S. of Equation 83 can be dealt witiei following manner:

({feramf))-{({er-emr-emnh)

~(({ ) - o) - () (@)} )) e
~(({ ey - e ) @)
L R

The uncertainty in the direction between any two eigenvedmgiven by:

- )\3()\i +Ai— Ag)
A= jE\/ (®o50ar) (©)

with an uncertainty in eigenvalues given by:

(2029 &0

5 David Oliver [Oliver, 2004]

5.1 The Action Principle

Action is mathematically defined by the integral:

t
s= [ Ldt 87)

5]
where, L is defined as the LagrangifanThe action principle can be stated as folloved:all the possible paths the
particles may take between any two given points in spaceieng] they take those paths for which the action, S, has the
least possible valueThe Lagrangian is really nothing more than the differenesvieen kinetic and potential energy,
in Galilean space-time, but in its evolution, nature seeksinimize any deviation between kinetic and potential
energy, regardless of the continual interchange betwemitwh. In relativistic space-time, the action becomes the
dominating factor in what path, for any given particle, theverse will conspire to create. If we define the total
energy as:

H:Zpa‘).(a_L(XC“).(a) (88)
a
wherep, is the momentum of a particle defined by:
OL (Xq,X
Py = % . (89)
a
The kinetic energy can be defined as:
1 0L (Xa,Xa) .

INote: Oliver refers to the Lagrangian as the gene of motian
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and the angular momentum is:

oL (Xq,Xq)
O0Xq '

We are also met with another way of describing what is mearinwne claimshe action must be minimizethink

of the bottom of a valley as minimum in potential energy. I edso be said that if the valley is a smoothly varying

"bowl,” if you will, then one might claim that the bottom of géhvalley has an approximately zero slope. What does

it mean to have nelope& For any given function, f(qa,qs.. - .,qn), the following statement defines what it means to

haveno slopeat some point, g in space-time:

J=Xq X (91)

of
- =0, 92
00 la=do ®2)
or one could also say that tiariation of a function must vanish at some poing, h space-time:
of
of =—0qg =0, 93

wheredq; are theargumentsof the function, f. The variation of the function, f, illuste how small changes in its
arguments, i cause changes in the function itself. That means, if thégbaterivative of one of the arguments
vanishes, the variation insuffers no change (e.g@f/dq; = 0, thusdf = 0 regardless 0dq;). Since the variation of the
argumentsggq;, are arbitrary, the vanishing variation fofequires that every partial derivativéf/ dq;, vanishes at the
arbitrary point, g. Thus,least actionis define as the conditions for which the functions, q(t)isathe requirements

to force dS = 0. The action is defined agunctional = a quantity that has a single value corresponding to an entire
function Thus, the variation of the action is defined as:

2 L[ aL oL
5S= 6Ldt:/ 2= 50 + 2= |dt 94
8 A (aqi 0] G Q|> (94)
where the second term in the equation is defined as:
oL_. oLd
a—qiéql = 9g dt <5ql> (95a)

d [ dL d [ dL
i) 18

An important thing to note is that the path variatiods, vanish at the end point)q,t); and ©q,t),. So we look at
the first term in Equation 95b and notice the following:

t2
d[dL oL
— | ==90q |dt=| =—9dq;
/tl dt<aqi ql) (aqi ql)t
So we then have the following from Equation 95b:
L2 gL | d(dL
—.6'-dt:—/ 2% | gt 97
T i 8 [dt(&qi>] i 97)

which means we've now transformed the second term in Equ&binto a variation oD g, instead ofd¢. This
implies that we can do the following:

tld Ly oL
58__/t1 <a<d—qi>—d—qi>6q.dt. (98)

14

=0. (96)
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5.2 Other important definitions

The Total Time Derivative

df oaf of . of .

E—E-F (0_qiq'+0—pip'> (99a)
of
=E+{f,jf} (99b)
where{f,.7} is called aPoisson brackeand.7# is the Hamiltonian, defined by:

of dg og of
fogr=—-————-—1. 100
{ g} <5Qi3pi aQi5|0i> (100)

It is important to note that the position-momentum pair isaatisymmetric manifestation of a symplectic structure
Here are some general rules of Poisson brackets:

1. If bothf andg are scalars{f,g} is a scalar
2. If f is a vector andy is a scalar{f,g} is a vector
3. If bothf andg are vectors{f,g} is a second rank tensor.

The Hamilton equations of motion allow/show an example oéketthis notation can be of constructive use with the
following two examples/definitions:

G = {qi,ff} (101a)

b = {p. 2} (101b)

{ana} =0 (101c)

{p.p}=0 (101d)

{Qi,pj} = §jj (101e)
{Ji,Jj} = &ijcdk

J'{J’Ji} :Ji{Ji’“"i} (102a)

= &ijkJidk

={33.9} (103a)
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{Xi7‘]j} = &jjkXk (104a)
{pi7~]j} = &ijk Pk (104b)
{F.,J,} = &R (104c)
{f,J,-} —-0 (104d)

(whereF is any arbitrary vector function arfdis any arbitrary scalar). Phase space is always an evemdiamal
manifold that describes the space of motion. This motios fiilase space with the phase trajectories described by q(t)
and p(t). The essence of configuration space is Euclidede phase space is sympleétidf we define the following

as the single 2s state vector of phase space:

¢ =(a.p) (105)

where the first s-components éfare position coordinates of all the particles in the phaseeyou're trying to
describe. Thesymplectids a 2sx 2s antisymmetric matrix defined as:

0o |
=1 5 o] (106)

wherel is the identity or unit matrix (of dimensiog). TheJ is a perfect example of symplectic space (Oliver calls it
the signatureof symplectic phase space). It has the following properties

J=-J=-751 (107)

whereJ is defined by:
I =-3 (108)

or, in other words, thé&ranspose conjugatelhe symplectic also has a square:

0 |
JZ:—[_I O]:—J (109)

and it has thelefining propertyof inducing a vanishing scalar product on any phase spadervec
¢iJij¢j = 0 (often seen a&J¢ = 0). (110)

The symplectic allows us to rewrite the Poisson brackettiootdn a different manner:

{f,g} - 3—233—? (111)

which allows one to look at the Poisson bracket of any fumgti(€), with the phase space vectér,

of
{E,f}:Jﬁ. (112)
We are finally allowed to look at the Hamiltonian equationsigshe symplectic and phase space vectors:
- o
Ez{f,c%”}:JW. (113)

2gymplectic structures named after the Greek wortid ek6¢, meaningtwinedor braided It is an antisymmetric pairing of coordinates
induced by the action principle.
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A useful relationship between any two quantitie$¢ Fand G&), can be shown to be:
oF 0G OF 0G
{F,G}_E E_E.{E,G}_—E-{E,F}. (114)
So the Poisson bracket illustrates a number of points:

1. The Poisson bracket ispsojection of the normals of the level surfaces of one qiyantion the tangents of the
level surfaces of the other

2. If {F,G} # 0, theflow of Fdoes NOT stay on level surfaces of G, rather it cuts ACROS®Ithe G is NOT a
constant on the flow of F.

3. If {F,G} = 0, theflow of Fnot only stays on its own level surface, it is on the level aces of G too= The
two gquantities become one common surface to which both floevs@nfined.

4. Every mechanical quantity,(E), has an image in phase spacehsetf level surfaces filled with streamlines
generated b){E ,F} = the flow. = The Poisson bracket describes the intersection of the tws fiwoduced by

F(&) and G§).

5. Thephase flows incompressible.

5.3 Hamilton-Jacobi Theory

The motion of the world is imaged as a flow in phase spdde manner in which to find thedlwsinvolves
the integrals to Hamilton's equations. The mathematicehfof the action principle, Hamilton's equations, and
Poisson brackets are independent of the coordinate syheyrate expressed iMotion with s-degrees of freedom
has 2s canonical coordinates which form s-conjugate pairsAny set of canonical coordinates is related to another
set by transformations which preserve the action princig@ensider the set of canonical coordinates (Q,P), where
Q = (Q1,Qs,...,Qs) and P = (R,P,,...,Ps). Though it may appear that Q and P are actual position andemtum
coordinates, they need not be. Now Hamilton’s equations are

.o
- 115a
o= =2 (115a)
. o
A= (115b)
so that now#” — 7" (Q,P) which still satisfies:
1o 1
5S— 5/ (pdg—dt) =5 | (RdQ - #dt) . (116)
11 ta

These two integrals may differ by any function, F, which hasiaishing variation (i.e0F = 0). Thus the difference
between the integrals in Equation 116 must be the totalrdiffital of F:

dF = pidg — RdQ — <%”—%”’>dt (117)

which defines what is referred to #se generating functian The generating function, from Equation 117, is F =
F(q,Q,t). The relationship of any coordinate can be described aaAsll

OF
pi = aq (118a)
|
P = —5—5_ (118b)
|
(ff - jf’) - ‘Z—T (118¢)
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but the generating function can be written in a differentrf@s:
dG:d<F+P.Qi) = pidq+P.dQ—<jf—jf’>dt. (119)

Here, G = Gq,P,), where the coordinates are:

G
pi = g (120a)

G

N 0G
(,%”—jf ) " (120c)

1. The generating function incorporates ONE coordinatmftioe old pair and ONE coordinate from the new pair.

2. The canonical transformation presents one of the coateknexplicitly and one of them implicitly. Meaning,
in the transformation from the state (q,p) to the state (QyPhe generating function, @Pl) the implicit-
explicit nature can be seen in Equations 121a and 121b.

3. Explicit Dependence= A direct relationship between two quantities, e.g. f(t) leitly depends ort if the
variablet exists directly in the function f(t), NOT if a variable in ¥(has a dependence on time. Meaning,
f(x(t)) would not explicitly depend ohUNLESSt existed indpendent of(t) in the function.

4. Implicit Dependence= An indirect relationship between two quantities, e.@(tt)) implicitly depends on the
variablet, butx explicitly depends om

a%F(q,F’,t) =p (121a)

Q= 6(ar) (121b)

where the new coordinates,(@p), are givenexplicitly by Equation 121b and the coordinateggf), are given
implicitly by Equation 121a. The two following examples illustrate sdnvial transformations:

G (q, PJ) =qiR (122a)
F <q, QJ) =qiQi (122b)

yield the following identity and inverse-identity transfaations: 1) for C{q,P,l) we have the identity transformation
given by:

Q=q (123a)
P =npi (123b)
H = (123¢)

and 2) for §q,Q,t) we have the inverse-identity transformation given by:

Q= i (124a)
P=-q (124b)
A= . (124c)
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A nineteenth-century astronomer, C.E. Delaunay, usedattettiat the transformations must ONLY be canonical in
nature by attempting to simplify the problem of motion. Is hitempts, he found coordinates that are now referred
to aselementary flowcoordinates, which occur when one of the coordinatesy B, are selected as constants (i.e.
assume we chose B |;, thenl; = 0 and Q = a;). Now Hamilton’s equations simplify dramatically to:

. o

P = an (125a)
07"

7 =0 (125b)

which simplifies our job of solving Hamilton’s equations avmore than just having Equation 125b be null. The
reason for the underlying simplicity is due to the coordirmsymplectic union. This equation also shows us that
the Hamiltonian is now only a function of one canonical cawate, namely?” = 7 (I ) We may now rewrite the
R.H.S. of Equation 126 as a function of onlglso:

cq(l) = aéy;ﬂ . (126)

This reformulation of the coordinates allows for a remabkabvial integral form, which might otherwise be seem-

ingly impossible:

. a%/

ai:/dt( — )=at+h (127)
|

wheref; (i=1, 2,..., s) are the integration constants.

1. The elementary flow ONLY "flows” along the-coordinates=- its phase velocity has no components in the
invariant coordinatel,, sincel = 0.

2. The integrals of elementary flow depend upon the two caista integration) and3, which make up the two
sets ofs quantities.

3. We can define thPhase VectofEquation 128a), the phase vectoPhase VelocitfEquation 128b), and the
Integration Constant¢Equation 128c).

==(a,l) (128a)
Q=(w, O) (128b)
S = (B,1) (128c)
Thus the elementary flow can be described by:
=(t)=Qt+.7. (129)

The elementary flow can be seen to depend upon the constdhiw,0f”, which are also invariant in coordinate phase
space becaus®uantities invariant on the flow in one set of coordinatesiavariant on the IMAGE of this flow in all
other canonical coordinates> they are the 2s invariants of motion! This is important beeathhe elementary phase
space coordinate§, = (a,l), are NOT connected to their image phase space coordir&teiq, p), in any simple
way (typically a VERY "ugly” transformation connects thentjowever, the invariants are the "same” in both phase
spaces, linking the two together, satisfying an importamiservation law:

A(F)=0. (130)
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These invariants also satisfy the condition that its rahahge along the "flow” (i.e. its total time derivative) vsimes

by:
ds _0s

at ot
It is often the case wherg’ # J(t), explicitly (i.e. d.#/dt = 0), but only a function of the canonical phase space
coordinates,.¥ = .#(q,p). Thus any quantity which doe¥OT EXPLICITLY depend upon time satisfies the
following:

{y,%ﬂ} ~0. (131)

{f,jf} —0, (132)

namely, it's Poisson bracket with the Hamiltonian vanishes

5.4 Action Again
Since we can say that the Lagrangian is really just the tioted tlerivative of the action, we can also say:

dS= —s7dt+ pdg = 2—t8dt+ g—;‘dq . (133)
|

As one might expect from our previous treatments of suctgthiwe can say:

S

H = 5t (134a)
0S

pi = d_qidq (134b)

and since” = %”(q, p), we can rewrite Equation 134a as:

S

(a2 =0. (135)

g

We now know that S = 8,t) is a solution to the %-Order partial differential equation in treeposition coordinates,

g, and the timet. The solution, in general, depends umoh 1 constants of integration, where one of these constants
is purely additive; meaning, if @,t) is a solution of the Hamilton-Jacobi equation, thei,$) + Aiis too (assuming
A'is an additive constarit) We also assume the total energy of our system is constaaningg.# = & = dS/dt,
which leads to an action of the form:

s(q, | ,t) — &t +Sb<q,l) (136)
where %(q,l) is the time-independent part of the action. One should alde that the constang, is one of the
invariants,l = (l1,12,...,ls). So now we have the new momentum-like coordinates; IPin G(q,P,t) = So(q,l>.
This leaves the remaining coordinates as:

7}
P= 5 S(41) (1372)
17}
ai = a—lis,(q,l) (137b)
(137¢)

330, it's not entirely clear why, but the remaining constantsst invariants of motion.
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or they may also be expressed as:

D — a%is<q’ | ,t) (138a)
B = %S(q, I ,t) (138b)
(138c)

which leads us to the conclusion that the Hamiltonians inttfesets of coordinates are the same, just of different
form, given by:

yf’(|> - yf(q, p) . (139)

We already know that we can write the action as an integrdi@tanonical coordinates:
S= / (mdg - 2d) (140)

but this form isclearly not an invariarft, so we reconsider this case as a contour integral over adctmseour,y, in
phase space as:

szfy(pidq — ). (141)

One should note that the contoyy,itself is not invariant because it is deformed as it is swbkpiugh phase space
by the flow, however, the integral over this moving contoun ba invariant. This closed integral is the Poinear”
invariant. Though this invariant exists for all motion, item is completely opaque unless the canonical coordinates
are known functions and one can actually solve the integrals

5.4.1 Hooke Motion

As a way to illustrate how these transformations work, wedhsider a few examples. The first of which is an
idea proposed by Robert Hooke, one of Newton’s most promicememporari€sinvolved a force corresponding to
the potential:

K2
V(e =" (142
wherek is a constant. It gives rise to a force, denoted by:
—iV (0) = -kq=7 (143)
aq '

which really doesn't correspond to any fundamental forceature, it's only an approximation to the force between
two bodies bound by an elastic material (e.g. a spfinghe Hamiltonian can be written as:

2 K2
%:;—m+7q, (144)

“Due the indefinite nature of the integral and the lack of ot invaraince in the;plg terms, the integral can’t be said to be an invariant
of motion.

5The invariance arises from the integration within a closedrlary. When one considers the integral at hand, one caneseee really
integrating the Lagrangian within a closed boundary. Theans, for this integral to NOT be an invariant of motion, lieggia violation of the
conservation of energy

8Hooke happened to be a rather short man, while Newton wasa#roth men did not get along very well, and as a way to mooklk,
Newton said the famous quotk:l have seen further it is by standing on ye shoulders of Gian

"Oliver goes into a paragraph-long explanation of how therisg-square law Coulomb force actually averages out tceardiforce when
dealing with the macroscopic scale of a spring. This resulémormous cancelations of forces.
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corresponding to the Hamiltonian for the simple harmonicillsgor with natural frequencyg, = /k/m. The
canonical invariant of motion and its elementary flow (likeestementary flows) turns out to be:

| =7/ (145a)
a=w+pb (145b)
which gives us a new Hamiltoniamz” (1) = w,l, and the coordinatega, 1). The generating function for this case

is the action found in Equation 136. This can be found fromriagl Equation 135 for one degree of freedom, which
reduces to:

d$
d—q = p(Q) (146)
After some algebraic manipulation, the integral fgrcan be foungito be:
MCHO2
S(a.1) :/dq\/meO<I - “;"q ). (147)
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