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ABSTRACT: This experiment used a torsion pendulum 
apparatus to calculate the damping constant, β, at points 
where the system is under dampened and critically 
dampened.  This experiment also used a forcing motor to 
drive the pendulum at frequencies near resonance for three 
different brake currents and used the calculated resonance 
frequencies to determine ß for each case.  In this 
experiment, we determined that ß is not constant for free 
rotational oscillations but is for forced rotational 
oscillations. 
 
INTRODUCTION: 
This experiment examines the behavior of a torsion 
pendulum, a special case among mechanical oscillators. 
 
Note that angular frequency (w in rad/s) and frequency (f in 
Hz.) are not the same. 
In the damped case, the torque balance for the torsion 
pendulum yields the differential equation: 
 

 
(1) 

where J is the moment of inertia of the pendulum, b is the 
damping coefficient, c is the restoring torque constant, and θ 
is the angle of rotation [Leybold Scientific,2006a]. This 
equation can be rewritten in the standard form [Thorton and 
Marion, 2004]: 
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where the damping constant is 
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" = b

2J
 and the natural 

frequency is 
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J
. The general solution to this 

differential equations is: 
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with three different types of solutions possible depending on 
the relationships between ω0 and β.  In the underdamped 
case (β < ω0): 
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with the oscillation frequency 
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amplitude θ0, and phase γ.  In the critically damped case (β 
= ω0): 
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In the overdamped case (β > ω0): 
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For the forced oscillation case, an external torque is added 
to Equation 1: 
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where ω is the driving frequency and τ0 is the driving 
torque [Leybold Scientific, 2006b]. The general solution 
to the differential equation is the sum of the homogeneous 
solutions (which are the solutions to the damped case 
above) plus a particular solution. The particular solution 
has the form: 
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with 
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In this case the resonance frequency is 

! 

"
r

= "
0

2 # 2$2  and the phase shift between the 
pendulum and the external oscillator is: 

 
(10) 

 
THE EXPERIMENT:  

 
Figure 1: A schematic of the torsion pendulum apparatus [Leybold 

Scientific, 2006b] 
 
The experiment was conducted with the torsion pendulum 
apparatus set up as shown in Figure 1, using a low voltage 
power supply and two digital multimeters.   
 
For the first half of the experiment, the driving motor was 
not active.   
 
We first determined was the period of the torsion 
pendulum to find the natural frequency by taking 3 
measurements of 10 oscillations of the pendulum with the 
damping magnet turned off. 
 
Next, we determined the damping constant, β, at two 
values of the damping current, 0.1 A < I1 < 0.3 A and 0.3 
A < I2 < 0.6 A.  First, we calculated the period of 
oscillation at each current and then started the pendulum 
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at its furthest point of rotation and measured the amplitude 
after each period. We then fit the amplitude vs. time data to 
an exponential curve and used equation (5) to determine the 
damping constant.   
 
The damping current was increased until the pendulum was 
near critically dampened, or when it only completed one 
oscillation after release from its furthest rotation point.  For 
this case, we took the average oscillation time.  We then 
further increased the current to the point where the 
pendulum was critically dampened, or did not cross zero 
after release from its furthest point of rotation.  We used the 
critically dampened case to estimate the damping constant 
from equation (5) by measuring the time it took the 
pendulum to reach 1/10 of its initial value after being 
released from its furthest rotational point.  In the critically 
dampened case, B = 0, A = furthest rotational point value at 
time t = 0. We used this β to get estimates of the damping 
coefficient, b, and restoring torque, c, where the moment of 
inertia of the pendulum.  
 
The latter part of this experiment was conducted with the 
forcing motor turned on. 
 
To determine a relationship between voltage and frequency 
of the forcing motor we determined the frequency of the 
motor at various voltages by finding the average period of 
the motor at several voltages and making a fit of frequency 
to obtain the relation between them. 
 
The resonance frequency curve for currents of, I = 0A, I ~ 
0A, I ~ 0.4A, I ~ 0.8A were determined by taking 
measurements of amplitude of oscillations in intervals of 
0.005 Hz from f = 0.465 Hz to f = 0.560 Hz for each 
damping current by varying the voltage of the motor 
accordingly.   
 
DATA PRESENTATION AND 
INTREPRETATION OF RESULTS: 
Determination of the natural angular frequency, 

! 

"
0
, with 

the damping current at I = 0 A : 
Mean period for 10 oscillations 1.927 ± 0.005 s 
Natural frequency 0.519 ± 0.0012 Hz 
Natural angular frequency, ω0 3.260 ± 0.008 rad/s 

Table 1: the period, natural frequency and natural angular frequency of 
the torsion pendulum 

 
Mean period at damping current I = 149 ± 3mA: 1.927 ± 
0.005 seconds 
 
The data for amplitude vs. time for a damping current of I = 
149 ± 3mA was taken at each consecutive period starting 
after the pendulum had gone through one oscillation.  The 
uncertainty in measurement of amplitude was assumed to be 
0.2 at each measurement with an uncertainty in time given 

by: 

! 

"t = n *"T .  When this data was fit to an 

exponential curve, the fit equation was: 

! 

y = Ae
Bx , where 

A = 21.2 ± 0.5 and B = -0.040 ± 0.001 rad/s.  β was found 
to be -B as per equation (4): β = 0.040 ± 0.001 rad/s.   
 
For a damping current of 490 ± 7 mA, the mean period 
was found to be 1.927 ± 0.007 seconds 
 
The data of amplitude vs. per consecutive period with a 
damping current of 490 ± 7 mA was taken in a similar 
fashion.  Again, the uncertainty in amplitude was taken to 
be 0.2 and uncertainty in time was : 

! 

"t = n *"T .  This 
data was also fit to an exponential curve as seen in Figure 
2 with a reduced chi-squared of 4.7.  The equation of the 
fit line was of the form 

! 

y = Ae
Bx  where A = 26.6 ± 0.4 

and B = -0.17 ± 0.03 rad/s which, as per equation (4) 
gives the value of the damping constant to be β = 0.17 ± 
0.03 rad/s, a reasonable answer as one would expect the 
damping constant to increase as the damping current 
increases.    
 

 
Figure 2: Plot of Amplitude vs. time fit to an exponential curve, where 
each data point is spaced apart by one period (1.927±0.007 seconds) 

 
The system was near critically dampened at a damping 
current of 1.69 ± 0.02A with a mean stopping time of 2.3 
± 0.1 seconds.  We found that the system was critically 
dampened at a damping current of 1.90 ± 0.02A with a 
mean stopping time of 1.6 ± 0.3 seconds.  The results for 
the time to stop agree with the idea that the pendulum 
comes to rest at sooner when the damping is increased 
 
For the critically dampened case, the mean time for 

! 

"  to 
decrease from its furthest point of rotation 

! 

"
0
= 19 to 

! 

"  = 
1.9 was found to be 1.00 ± 0.08 seconds.  We used this in 
conjunction with equation (5) to get estimates of β, b, and 
c.  The damping constant was found by use of the 



TORSION PENDULUM 
 Ross Terhaar 

 - 3 - 
following equation: 
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found by 
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where 

! 

"t  = the mean time for 

! 

"  to decrease to 

! 

"
0
.  The 

estimate of the damping coefficient, b was found by use of 
the following equation: 

! 

b = 2J"  and 

! 

"b = (#b
#J
"J)2 + (#b

#$
"$)2 , Where J = 3.0 ± 0.1 kg • m2.  

An estimation of the restoring torque was found by use of 
the following equation: 

! 

c = J" 2  and 

! 

"c = ( #c
#$
"$)2

+

+ (#c
#J
"J)2 .  See Table 2 for the obtained 

values. In the critically dampened case, it is expected that 

! 

" =#
0
, which is not exactly the case as seen in comparing 

β from Table 2 and ω0 from Table 1. 
 

β = 2.3 ± 0.2 rad/s 
b = 14 ± 1 (kg * m2)/s 
c = 16 ±3 kg-2m-4s-2 

Table 2: estimations of β, b, and c at critically dampened, I = 1.90±0.02A. 

 
The latter part of this experiment dealt with forced 
oscillations of the pendulum.   
 
A relationship between frequency and voltage was 
established by determining the mean period and thus 
frequency at a range of dial settings along with the voltage 
across the motor measured by the multimeter and fitting that 
data to a linear function.   
 
The equation relating frequency and voltage is of linear of 
the form 

! 

y = A + Bx , where A = -0.01 ± 0.006Hz, B = 
0.071 ± 0.11x10-2 Hz/V, y is the frequency and x is the 
voltage across the motor. 
 
We then chose the range of frequencies to look at resonance 
to be 0.465 Hz ≤ f ≤ 0.560 Hz for each damping current.   
 
Measurements of amplitude vs. frequency were taken by 
setting the forcing motor to the particular voltage to give the 
desired frequency, stopping the pendulum before each 
measurement and letting the pendulum settle for a few 
minutes for each measurement.   
 

 
Figure 3: Plot of the resonance curves for damping currents of I = 0A,   

I = 72 ± 2mA, I = 424 ± 6mA 
 

 
Figure 4: Plot of the resonance curve for a damping current of 

I=424±6mA 

 
Figure 5: Plot of the resonance curve for a damping current of I = 

0.830±0.01A 
 
Figures 3 to 5 plot the resonance curves for braking 
currents I = 0A, I = 72 ± 2mA, I = 424 ± 6mA, and I = 
0.83 ± 0.01A.  The plots were used to determine the 
resonance frequency.  The uncertainties in resonance 
frequency were estimated based on accuracy to which we 
could determine the frequency of resonance for each 
braking current.  The damping constant was estimated by 
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use of the following formula: 
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uncertainty of β was given by 
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2 , with 
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0

= 3.26 ± 0.02.  The values of fr , ωr, and β obtained 
are shown in Table 3 below. 
 

 I=0A I=71±2mA I=424±7mA I=830±10mA 

fr (Hz) 
0.528 

±0.003 
0.527 ± 
0.003 

0.523 ± 
0.004 0.510 ± 0.007 

ωr 
(rad/s) 

3.34 
±0.02 3.31 ± 0.02 3.29 ± 0.03 3.20 ± 0.04 

β 
(rad/s) 

0.51 ± 
0.07 0.41 ± 0.09 0.3 ± 0.1 0.4 ±0.1 

Table 3: resonance frequencies and the associated angular resonance 
frequencies, in addition to the calculated damping constant at each brake 

current. 
 
As expected, the resonance frequency differs less from the 
natural frequency with lower damping. 
 

 
Figure 6: A plot of phase vs. frequency around the natural frequency of 

0.519 ± 0.001 Hz 
 
It can be seen in Figure 6 that as the difference between the 
angular driving frequency and the natural angular frequency 
approaches zero, the phase difference between the 
pendulum and the forcing motor approaches 

! 

± "

2
, and at 

high and low frequencies, the phase approaches zero.  The 
phase plotted in Figure 6 was given by the equation: 

! 

" = tan
#1
(

2$%

% 0
2 #% 2 ) , where ω is the angular frequency of the 

forcing motor, and ω0 is the natural angular frequency.   
 

 I=149±3mA I=490±7mA I=1.90±0.02A 
β rad/s 0.040±0.001 0.17±0.03 2.3±0.2 

Table 4: A comparison of β calculated for dampened oscillations at 
different damping currents 

 

 I=0A I=72±2mA I=424±6mA I=0.83±0.01A 
β 

rad/s 0.51±0.07 0.41 ± 0.09 0.3 ± 0.1 0.4 ±0.1 
Table 5: A comparison of β calculated using the resonance curve of forced 

oscillations at different braking currents 

 
Comparing the damping constants found for dampened 
and forced oscillation at similar values of damping 
current, as shown in Tables 4 and 5, it is evident that β is 
not consistent.  This could be a result of the poor fit for 
the damping current of I = 149±3mA.  The damping 
constant for damping currents of ~0.45A are marginally 
close but do not agree within the bounds of uncertainty, 
which may again be a result of inaccuracies of the fit of 
the data.   
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