Apparatus

1 Torsion pendulum 34600
1 DC power supply $0 \ldots 16 \mathrm{~V} / 0 \ldots 5 \mathrm{~A}$. 521545
1 Plug-in power supply for torsion pendulum. 562793
1 Ammeter, DC, I ≤ 2 A, e.g. LDanalog 20 531120
1 Voltmeter, $\mathrm{DC}, \mathrm{U} \leq 24 \mathrm{~V}$, e.g. LDanalog 20 531120
1 Connecting lead, 100 cm , blue 500442
2 Pair cables, red and blue, 100 cm 50146
1 Stop clock 31307

For the specific solution the following relationship can be used:
$\varphi(t)=\varphi_{0}\left(\omega_{\mathrm{ex}}\right) \cdot \sin \left(\omega_{\mathrm{ex}} \cdot \mathrm{t}-\phi\right)$
Substituting equation (III) in equation (II) gives after several trigonometric transformations the amplitude of the forced oscillation:
$\varphi_{0}\left(\omega_{\mathrm{ex}}\right)=\frac{\mathrm{M}_{0} / J}{\sqrt{\left(\omega_{0}-\omega_{\mathrm{ex}}\right)^{2}+\left(\frac{\mathrm{k}}{\mathrm{J}} \omega_{\mathrm{ex}}\right)^{2}}}$

The frequency at which the amplitude of the oscillation is maximal is called the resonance frequency ω_{R} (amplitude resonance). This is the case when the radicand in the denominator is minimal. By equating the derivative of the radicand with respect to ω to zero the following relationship for the resonance frequency is found:
$\omega_{\mathrm{R}}=\sqrt{\omega_{0}^{2}-\frac{\mathrm{k}^{2}}{2 \mathrm{~J}^{2}}}=\sqrt{\omega_{0}^{2}-2 \delta^{2}}$
with
$\omega_{0}=\sqrt{\frac{D}{J}} \quad$ (natural frequency)
$\delta=\frac{\mathrm{k}}{2 \cdot \mathrm{~J}}$
(damping constant)

The lower the damping the less the resonance frequency differs from the natural frequency ω_{0} and the larger is the amplitude. In the limit of disappearing damping ($k \rightarrow 0$) the amplitude at the resonance frequency ($\omega_{\mathrm{ex}}=\omega_{0}$) would tend towards infinity (so called resonance catastrophe).
From equation (IV) follows that amplitude of the forced oscillation tends towards zero for very high frequencies. For very low frequencies $(\omega \rightarrow 0)$ the amplitude tends towards the value M_{0} / J (which is not equal zero). The resonance curve is not symmetrical with respect to the resonance frequency ω_{R}.

Fig. 2: Schematic representation (wiring diagram) of the experimental setup: (A) exciter, (B) eddy current brake.

LD Didactic GmbH • Leyboldstrasse 1 • D-50354 Huerth / Germany • Phone: (02233) 604-0 • Fax: (02233) 604-222 • e-mail: info@ld-didactic.de

