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LD 
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Mechanics 
Oscillations 
Torsion pendulum 

Free rotational oscillations  
 
Measuring with a hand-held stop-clock

Objects of the experiment 
g Measuring the amplitude of rotational oscillations as function of time 
g Determination of the damping constant and the logarithmic decrement 
g Investigating the transition form the weekly damped oscillation case to the limit case 
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Oscillations (and wave) phenomena are well known due to 
their presence everywhere in nature and technique. Their 
investigation is thus both from experimental point of view as 
from theoretical point of view an important topic as it allows to 
study fundamental methods and concepts of physics. 
The rotary oscillations are a special case among various 
mechanical oscillator models (compound pendulum, spring 
pendulum etc.) which allow to investigate the most important 
phenomena which occur in all types of oscillations. Addition-
ally, to the usual observation of a free damped harmonic 
oscillator anharmonic oscillator can also be realized. In ex-
periment P1.5.3.4 anharmonic chaotic rotary oscillations are 
examined in order to show that the harmonic oscillations are 
only a special case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Schematic representation of various damped oscillation  

curves:  
(A) weakly damped case: ω  (blue curve)  

(B) heavily damped case:  (red curve)  
in comparison with an damped oscillation of type (A, blue)  
(C) aperiodic limit case:  (green curve)  
in comparison with heavily damped case (B, red). 
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The movement of a free damped (rotary) oscillating system 
can be described by the differential equation 

0D
dt
dk

dt
dJ 2

2

=ϕ⋅+
ϕ

+
ϕ

           (I) 
J: moment of inertia 
D: directional quantity (restoring torque) 
k: damping coefficient (coefficient of friction) 
ϕ: angle of rotation 
 
With the damping constant  

J2
k
⋅

=δ
                (II) 

the natural angular frequency of an undamped oscillation 

J
D

0 =ω
               (III) 

and the angular frequency of the damped oscillation  
22

0 δ−ω=ω              (IV) 

equation (I) may be resolved by 

tcose)t( t
0 ⋅ω⋅⋅ϕ=ϕ ⋅δ−           (V) 

ϕ0: initial angel of rotation at time t = 0 

δ: damping constant 

ω0: characteristic frequency of an “undamped” system 

ω: angular frequency of the damped oscillation 

 

From equation (V) follows that the amplitude decreases by 
the amplitude factor e- δ⋅t (Fig. 1 − case (A)). Thus after a time 
1/δ the amplitude has decreased to 1/e of its initial value ϕ0. 
Moreover, from equation (V) follows that the ratio of two suc-
cessive amplitudes ϕn and ϕn+1 is constant 

T

1n

n eq ⋅δ−

+

==
ϕ
ϕ             (VI) 

q: damping ratio 

 
The exponent is called the logarithm decrement 

qlnlnT
1n

n =
ϕ
ϕ

=⋅δ=Λ
+

          (VII) 

However, according to equation (V) oscillations occur only 
when the angular frequency (i.e. equation (IV)) has a positive 
radiant (Fig. 1: case (A)): 

Apparatus 
1 Torsion pendulum .............................................. 346 00 
1 DC power supply 0…16V/0…5 A....................... 521 545 
1 Ammeter, DC, I ≤ 2 A, e.g. LD analog 20 .......... 531 120 
1 Connecting lead, 100 cm, blue .......................... 500 442 
1 Pair cables, red and blue, 100 cm ..................... 501 46 
1 Stop clock .......................................................... 313 07 

22
0 δ>ω  

 

If   the solution has the form 22
0 δ<ω

)ee(e)t( ttt
0

⋅ω−⋅ω⋅δ− +⋅ϕ=ϕ          (VIII) 

The oscillating system approaches the equilibrium position 
asymptotically after one oscillation (so called creeping or 
heavily damped case − Fig. 1 case (B) red curve). The higher 
the damping constant the slower the approach to zero. 

If   the solution has the form 22
0 δ=ω

t
0 e)tb()t( ⋅δ−⋅+ϕ=ϕ            (IX) 

The damping is so great that there is just no longer a crossing 
through the rest position. Any reduction in damping leads to 
an oscillation. This is the so-called aperiodic limit case which 
is of practical importance because the time required to reach 
the zero position is minimal. A measuring instrument having a 
pointer of a moving-coil system is thus designed with aperi-
odic damping (Fig. 1 case (C) green curve). 
 
 
In this experiment a rotatable metal wheel with inertia J is 
used as an oscillator. A helical spring acts on the wheel when 
its displaced by an angle ϕ from its rest position to produce a 
restoring torque M which is approximately given by 
 

ϕ⋅−= DM                (X) 

Owing to the unavoidable frictional forces (in the ball baring 
etc.) the amplitude of mechanical oscillation decreases in 
time. As a result a free damped oscillation is produced. In 
many (but not in all!) cases, the frictional forces (torques) 
are proportional to the (angular) velocity in the first order of 
approximation: 

dt
dkMF
ϕ

⋅−=               (XI) 

On the torsion pendulum the damping according equation (XI) 
is realized by passing the metal wheel through the field of an 
electromagnet. The electrons experience the Lorentz force. 
Thus the electrons are displayed perpendicular to the field of 
the electromagnet and the direction of the moving wheel. 
They flow back through the field free part of the wheel (Fig. 
2). As a result a closed eddy-current Ieddy circuit is produced.  
The part of the metal wheel in the magnetic field acts like a 
moving current carrying conductor on which a force F op-
posed to the direction of motion and proportional to the veloc-
ity v acts. This generates a deaccelerating torque MF. 
 
 

B Ieddy

 
Fig. 2: Generation of eddy currents Ieddy. 
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Setup 
Set up the experiment as shown in Fig. 3. The time is meas-
ured by the stop clock (not shown in Fig. 3). 
Set the pointer of the metal wheel (3a) to the zero position of 
the scale by turning the drive wheel (3e). 
 

VFINEA

521 545
DC NETZGERÄT 0–16 V / 0–5 A

DC POWER SUPPLY 0–16 V / 0–5 A

POWER

(A)
 
 
 

Safety notes 
g The current through the eddy current brake should not 

exceed 2 A for a long time. 

 
 
 

Carrying out the experiment 
a) Investigating the damping of the oscillation 
- Set the current for the electromagnet to a small value, e.g. 

I = 0.18 A 
- Move the pointer of the pendulum to the limit position and 

read off the amplitude A on the same side of the scale af-
ter each oscillation T (for the case of weak damping after 
5 or 10 oscillations). 

- Additionally, measure several times the time for 10 oscilla-
tions to determine the oscillation period T. 

Hint: If the pendulum achieves an equilibrium in less then 10 
oscillations measure the time several times to obtain the 
mean value. 
- Repeat the experiment in the same way for a larger cur-

rent (i.e. I = 0.4 A). 
 
 
b) Investigating the transition from oscillation to the 

limit cases 
- Increase the current until the pendulum performs an oscil-

lation depicted by the blue curve in Fig. 1 (B). 
- Move the pointer of the pendulum to the limit position and 

measure the time taken for an oscillation until the equilib-
rium position is reached. Determine the oscillation period 
as mean value from several measurements. 

- Increase the current until the pendulum performs an oscil-
lation depicted by the green curve in Fig. 1 (C). 

- Measure the time taken by the pendulum when released 
from the limit position. Determine mean value from e.g. 5 
measurements. 
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Fig. 3: Experimental setup (wiring diagram schematically) for ob-

serving damped rotational oscillations. 
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Measuring example 
 
a) Investigating the damping of the oscillation 
 
Note: The experimental data may differ from pendulum to 
pendulum due to inevitable tolerances between the eddy 
current brakes and the tiny differences in the mechanical set 
up. 
 
Table. 1: Measured oscillation amplitude A as function of time 
n⋅T (n-times the oscillation period) for I = 0.18 A and 
I = 0.25 A. 

s
t  

Scd
A  

s
t  

Scd
A  

0.0 20.2 0.0 20.2 
1.8 18.7 1.8 17.2 
3.5 17.3 3.6 14.5 
5.3 16.3 5.3 12.3 
7.1 15.2 7.2 10.4 
8.9 14.2 9.0 8.7 

10.7 13.2 10.8 7.5 
12.5 12.3 12.6 6.3 
14.3 11.4 14.5 5.3 
16.2 10.6 16.3 4.5 
17.9 9.9 18.2 3.8 
19.8 9.1 20.0 3.2 
21.6 8.5 21.9 2.7 
23.5 7.9 23.8 2.2 
25.3 7.3 25.6 2.0 
27.1 6.9 27.5 1.7 
28.9 6.3 29.3 1.4 
30.8 5.9 31.2 1.3 
32.7 5.5   
34.1 4.1   
35.9 3.7   
37.7 3.4   
39.5 3.0   
41.3 2.8   
43.1 2.5   
44.9 2.2   
46.7 2.0   
48.5 1.7   
50.3 1.6   
52.1 1.3   
53.9 1.1   
55.7 1.0   
57.5 0.9   
59.2 0.7   
61.0 0.5   

 

Table. 2: Oscillation period (mean value determined by 5 
measurements) for different eddy currents. 

Eddy current   
A
I  Oscillation period   

s
T  

0.18 1.80 
0.25 1.82 

 
 
b) Investigating the transition from oscillation to the 

limit cases 
I = 1.3 A.  
Measured oscillation period: 2.14 s. 
 
I = 1.5 A  
Measured oscillation period: 1.9 s 
 
 
 

Evaluation and results 
 
a) Investigating the damping of the oscillation 
Fig. 4 summarizes the result of Table 1. The damping con-
stant δ can determined for instance by fitting equation (V) to 
the experimental data. Alternatively, the fit of a straight line to 
data plotted in Fig. 5 gives the damping constant δ from which 
the logarithmic decrement Λ can be determined (Table 3.). 
 
Table. 3: Oscillation period T (from Table 2). damping con-
stant δ (determined by a fit to the experimental data plotted in 
Fig. 5) and logarithmic decrement Λ for various eddy cur-
rents I. 

A
I  

s
T  1s−

δ  Λ 

0.18 1.80 0.039 0.07 
0.25 1.82 0.094 0.17 
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Fig. 4: Amplitude as function of time. The solid lines correspond to a 

fit according equation (V). 
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Fig. 5: Amplitude as function of time. The solid lines correspond to a 

fit of a straight line yielding the damping constants δ listed in 
Table 3. 

 
 
b) Investigating the transition from oscillation to the 

limit cases 
The pendulum reaches the equilibrium after one oscillation for  
I = 1.3 A. The measured oscillation period is 2.14 s. 
 
For I = 1.5 A the pendulum reaches the equilibrium in 1.9 s 
without oscillating over the zero position. 
In this so-called aperiodic case the adjustment time required 
by the system to return to the equilibrium is a minimum. 
 
 
 

Supplementary information 
The oscillations with a restoring torque described by equation 
(X) are called harmonic oscillations. The harmonic oscillator is 
only a special case among systems which are capable of 
oscillation. Most of the real oscillations are not harmonic, i.e. 
relation (X) is not strictly satisfied. However, many oscillations 
can be considered as harmonic oscillations at least in the first 
approximation by developing the restoring torque (forces) as 
function about the rest position in series and neglecting non-
linear terms. The equation of motion (I) of such on oscillating 
system can generally not be solved analytically.  
The anharmonic oscillator is investigated in experiment 
P1.5.3.4. 
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