11. (20 points) Consider scattering from an attractive, spherical square-well of radius a. The following two pages contain plots calculated for the potential $V_{0}=-30 \hbar^{2} / 2 m a^{2}$ (i.e., dimensionless potential $U(r)=-U_{0}=-30$ for $r<a$ and $U(r)=0$ for $r>a$) for various values of the dimensionless momentum: $k=p a / \hbar$. The dimensionless scattering amplitude, f, is the usual scattering amplitude divided by a; The dimensionless total cross-section, σ, is the usual total cross-section divided by a^{2}. The partial wave phase shifts δ_{l} have been calculated as functions of k for various values of l (i.e., δ for $l=0$ is displayed as the red curve, etc.). On the second page the dimensionless differential crosssection $\left(|f|^{2}\right.$ as a function of the scattering angle $\left.\theta\right)$ is displayed for an exact (partial wave, in red) calculation and a Born approximation calculation (in blue). Sometimes just the small-angle scattering in the "forward" hemisphere is displayed as a semi-log plot; For $k=20$ and $k=40$ normal plots for large scattering angles in the "backward" hemisphere are displayed. Needless to say there is a great deal of information available in these plots!
(a) Define scattering amplitude (f) and phase shifts $\left(\delta_{l}\right)$.
(b) In the Born approximation the dimensionless momentum transfer \mathbf{q} plays an important role. Define \mathbf{q} and show that:

$$
q=2 k \sin (\theta / 2)
$$

FYI: the Born approximation applied to this potential results in:

$$
f=\frac{U_{0}}{q^{2}}\left(\frac{\sin q}{q}-\cos q\right)
$$

(c) The plots show that the Born approximation of $|f|^{2}$ always seems be 100 at $\theta=0$ and that there is a small-angle zero in $|f|^{2}$ at about: $\theta \approx 4.5 / k$. Prove these results and using your proofs report a better approximation than the above " 4.5 ". Remark: $|f|^{2}$ is at its largest between $\theta=0$ and $\theta \approx 4.5 / k$; This region is known as the main diffractive peak.
(d) On the left side of the first page of plots there are two striking features: that the scattering is nearly isotropic for $k \ll 1$ (e.g., at $k=0.5$) and that, near $k=1.4656, \sigma$ is unusually large. Explain both of these observations in terms of the the plotted behavior of $\delta_{l}(k)$.
(e) At $k \approx 1.4656|f|^{2}$ has gone from nearly isotropic to having three approximate zeros. Explain why three approximate zeros are expected, given the plotted behavior of $\delta_{l}(k)$.
(f) Define form factor. Explain why in, for example, electrons scattering off gold nuclei, you might expect the form factor to resemble the Born approximation for this square-well as reported in (b). for f.

Partial Wave vs Born Approximation

