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The Morse potential
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is exactly solvable and so provides a test case for various approximation methods. This
potential approximates that felt in a diatomic molecule as the nuclei vibrate. Note that the
potential resembles a half-infinite square well in that as r → ∞ the potential approaches
a constant, whereas as r → −∞ the potential grows exponentially. There are only a finite
number of bound states (0 < E < D) in addition to the continuum of free (E > D) states.
The potential is approximately simple harmonic, as
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where we have defined x = r − re (the displacement from equilibrium). Note that if we
approximate the potential as simple harmonic (i.e., neglect the higher order terms in square
brackets above),
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Deviations from a simple harmonic potential are a result of the fact that the force required to
push the nuclei together is more than that required to stretch them apart an equivalent dis-
tance. An energy D is required to disassociate (separate) the two nuclei (i.e., H2 → H+ H).
First as usual go to dimensionless coordinates with unit length l = a and unit energy e = D:
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(As usual we now simplify by not writing the primes.) The WKB form of this equation is:
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The exact bound state eigenenergies are given by:
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for n = 0, 1, 2 . . . up to the maximum value of E (which will of course be less than D).

1. Use the Rayleigh-Ritz (variational) method to estimate the eigenenergy of the ground
state for α = 10. Use the trial wavefunction:

ψ = exp(−qx2) (10)

You will need to use Mathematica to do the integrals. Note: the potential is not
reflection symmetric so for the potential energy at least, you must integrate over the
range [−∞,∞]. Use the Mathematica function FindMinimum to do the minimization:
FindMinimum[e,{q,your guess here}]

Note that you must give Mathematica a starting guess for q. I’d plot E vs. q to find a
good guess for the minimum.

Compare your estimate to the exact eigenenergy given above.

2. Use the Rayleigh-Ritz (variational) method to estimate the eigenenergy of the ground
state for α = 10. Use the trial wavefunction:

ψ =

{

0 |x| > a

a2 − x2 |x| < a
(11)

3. Since the potential looks quadratic for x ∼ 0, we should be able to approximate using
SHO. Use first order perturbation theory to determine the energy correction for a state
|n〉 of all the terms in the above series expansion Eq. 2. Hint: remember your raising
and lower operators!

4. Calculate the second order correction to energy for a state |n〉 due to the term: − h̄ω
2a

x3

5. Find the WKB approximation for these eigenenergies. Hint: change variables in the
WKB integral to u = 1 − e−x, note closely the range of integration in u and use the
fact:
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for A < 1. (Again: Mathematica does not seem to know this result!)

P.S. For folks knowing contour integration: Prove the above integral for extra credit.


