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APPENDIX I 

Coupling Schemes and Notation 
An extensive treatment of coupling schemes and notation is given by White or Kuhn.  A brief 

review is given here to allow one to read this manual with some insight. 
The motions of the electrons in an atom are governed by:  (a)  the electrostatic forces of 

attraction between the nucleus and electrons and of repulsion between pairs of individual electrons; (b)  
the magnetic forces due to orbital motions and the spins of the electrons.  These interactions are complex 
but for particular configurations one may make simplifying assumptions in order to perform 
calculations.  The assumptions specify a model for the system and different models will require different 
notations which specify the various angular momenta.  Atomic states can be described by a set of 
numbers and letters which specify the angular momenta.  Often a real situation can be described 
adequately by different models and the same set of states will be described in different books by 
different notations.  In fact, for the same model there may be different notations used because a notation 
which doesn't specify as many quantities may be sufficient to describe a particular example and in fact 
may be easier to use.  In the examples that follow one electron systems, such as the alkali metals, could 
be used but all examples will be two or more electron systems taken from He and Ne. 

Russell-Saunders or L, S Coupling 
Russell-Saunders coupling arises from the predominance of electrostatic over magnetic 

interactions.  In this model, the spins 

€ 

s of the two electrons are strongly coupled together to give a 
resultant 

€ 

S = s1 + s2 while their interaction with the orbital angular momenta are much weaker.  The 
origin of the strong interaction which couples the spins is the electrostatic repulsion between the 
electrons due to the Pauli exclusion principle.  In this model the orbital motions of the two electrons 
couple together also because of electrostatic interaction.  The orbital motions are described by the orbital 
angular momenta so we may say that the orbital angular momenta 

€ 

l couple together to give a resultant 
orbital angular momentum 

€ 

L = l1 + l2 .  Finally, both 

€ 

L  and 

€ 

S  couple to form the total angular 
momentum 

€ 

J = L + S .  Note that 

€ 

J  has magnitude   

€ 

J which is the total angular momentum of the atom.  
(From quantum mechanics, J is really 

€ 

J(J +1)  where J is a non negative integer. 
Russell-Saunders notation is given by 

n2S + 1LJ 
Where n is the principle quantum number for the orbit which specifies the shell (larger n for larger 
orbits), where numbers are substituted for S and J, and where the letters S, P, D, F … are substituted for 
L = 0, 1, 2, 3, … respectively.  Most often the designation of n is not included in the notation. 

As an example, consider the ground state of He.  Do not confuse the designation of the 
configuration of the electrons with the designation of the state.  There are two s electrons in the n = 1 
state and thus the configuration of the ground state is 1s2.  These two electrons have opposite spin so s1 
+ s2 = 0 and since both electrons have l = 0 then L = 0 and of course L + S = J = 0.  Therefore in L, S 
notation the ground state of He is 1So. 

If one of the electrons is promoted to the n = 2 state we can have the configuration 1s2s.  This 
can also be a 1So state if the electron spins are opposite but since the excited electron is in the n = 2 state 
this is designated as a 21So or to emphasize that it is an excited state we write as in Appendix II, He*21So. 

The ground state of Ne is also a 1So state and can be described using Russell-Saunders notation.  
However, for excited states of Neon, calculations using this approximation do not give the correct 
energy levels and a different model using j, l coupling is employed. 
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j,j and j,l Coupling 
In order to understand j, l coupling and to distinguish it from L, S or Russell-Saunders coupling 

one should first understand the mechanisms of interaction between the electrons and which mechanism 
is dominant is a particular atomic system.  As mentioned above, in L, S coupling we have the extreme 
where the electrostatic interaction dominates the magnetic interaction and the coupling for two systems 
can be symbolically written 

€ 

{(l1l2)(s1s2)} = {LS} = J  
At the other extreme, the primary interaction is the magnetic interaction between the spin and 

orbital motions of the individual electrons.  The spin 

€ 

s and orbital 

€ 

l angular momenta of the individual 
electrons are strongly coupled to form 

€ 

l + s = J  the total angular momentum for an individual electron.  
The electrostatic forces between the electrons now cause the different 

€ 

j  to be coupled and to form the 
resultant 

€ 

J = j1 + j 2.  This extreme, which is the second most common type of coupling is called j,j 
coupling and may be symbolically written as 

€ 

{(l1s1)(l2 s2)} = { j1 j 2} = J  

A third intermediate type of coupling which is valid for Ne is called j,l coupling and it occurs 
when some of the magnetic interactions are small and others large compared with the electrostatic 
effects.  In Ne, the configuration of the ground state is 1s2, 2s2, 2p6 and when one of the electrons is 
excited, the system is 1s2, 2s2, 2p5 + "excited electron" or for short, 2p5 + "excited electron", or "parent 
ion" + "excited electron". 

The parent ion has one p electron missing from a closed shell and so the term diagram of the ion 
is the same as if it had only one p electron except that terms will be inverted.  The parent ion core thus 
has levels 2P1/2 and 2P3/2 (with the 2P3/2 level lying deeper) and the energy levels in Ne approach these 
two limits as is shown in Figure 2.  Russell-Saunders notation is used for the parent ion because the spin 
orbit interaction in the ion is large.  When the excited electron is added to the system, the orbital and 
spin vectors in the ion core are not unlinked.  This means that the electrostatic interaction between the 
external electron and the core is weak compared to the spin orbit interaction in the parent ion.  However, 
the electrostatic interaction between the excited electron and the core is strong compared to the coupling 
of the spin of the electron to the core.  This means that the 

€ 

j  of the core and the 

€ 

l of the excited electron 
combine to form a resultant 

€ 

K = j + l  and hence the name j, l coupling arises.  The spin of the external 

electron then interacts with K  to form a resultant 

€ 

J = K + s (i.e. J = K ± ½) and thus j,l coupling may be 
symbolically written as 

€ 

{[(l1s1)l2]s2} = {[ j1l2]s2} = {Ks2} = J  

It should be noted that j, l coupling and j, j coupling are identical when the excited electron occupies an s 
orbit.  In this situation, since l2 = 0 then K = j1 and j2 = s2 and hence }{}{ 221 sKjj = . 
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Racah notation is used to describe this coupling and is given by (2S+1LJ)nl[K]J where the (2S+1LJ) 

refers to the parent ion and for Ne can be either 2P1/2 or 2P3/2.  The n and l refer to the excited electron 
and for Ne in this experiment we will only consider s and p electrons where l = 0 and l = 1 respectively.  
This notation can be shortened by the use of primed and unprimed symbols as in the Racah notation of 
Table I (Appendix II). 

€ 

(2P1/ 2)ns⇔ n # s 
(2P3 / 2)ns⇔ ns
(2P1/ 2)np⇔ n # p 
(2P3 / 2)np⇔ np

 

For an excited s electron in Ne, there are for states, two from the parent ion in the 2P3/2 state and 
two from the parent ion in the 2P1/2 state.  For the parent ion in the 2P3/2 state, j = 3/2 and l = 0 so K = j + 
1 = 3/2.  For the parent ion in the 2P1/2 state, j = 1/2 and l = 0 so K = j + l = 1/2.  Since J = K±½ then J = 
2, 1, 1 and 0.  The four states are 

€ 

n " s [1/2]1 n " s [1/2]0 ns[3/2]2 ns[3/2]1  
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For an excited p electron in Ne there are 10 states, six for the parent ion in the 2P3/2 state and four for the 
parent in the 2P1/2 state.  For the parent ion in the 2P3/2 state, j = 3/2, l = 1 and so K = j + l - 1, … |j - 1| = 
5/2, 3/2, 1/2 which gives rise to states with J = 3, 2, 2, 1, 1 and 0 and term designations np[5/2, 3/2, 
1/2]3, 2, 2, 1, 1, 0.  For the parent ion in the 2P1/2 state the four excited states are 

€ 

n " p [3/2,1/2]2,1,1,0 . 
The subscript J is used to determine which transitions are allowed according to the selections 

rules 

ΔJ = 0, ± 1 
where 

J = 0 → J = 0 
is forbidden. 

An older and still commonly used notation for the excited states of Ne is the Paschen notion 
which is given in Table I.  Note that the 3s levels in the Paschen notation are the 5s and 5sʹ′ levels of the 
Racah notation.  Paschen notation was an attempt to fit the Ne spectrum to a hydrogen-like theory.  
Although the approach did not work, the notation remains and the numbers and letters can be considered 
to be simply the names of the states and nothing more. 
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APPENDIX II 

Excitation Transfer in He-Ne Mixtures 

 

Figure 3: Energy Level Diagrams for Helium and Neon† 

A collision involving interchange of potential energy between excited atoms such as 

€ 

A* + B⇔ A + B* ± ΔE  
is called a "collision of the second kind".  The difference in energy ΔE comes from or goes into kinetic 
energy of the colliding species.  For resonant collisions, (ΔE → 0), cross sections two orders of 
magnitude larger than gas kinetic cross sections are realized.  When ΔE → 800 cm-1 (0.1 eV), the cross 
section for excitation transfer is negligible. 

Total spin conservation (ΔS = 0) is favoured in a collision involving excitation transfer.  Thus for 
the following two processes, the first is more likely. 

€ 

A*(↑↑) + B(↑↓)→ A(↑↓) + B*(↑↑) ± ΔE  

€ 

A*(↑↑) + B(↑↓)→ A(↑↓) + B*(↑↓) ± ΔE  

                                                
† Leon J. Radziemski, “Spectroscopic notation for the energy levels of helium and neon”, Optics News, January 
1989, p15-16. 
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Figures 3 and 4 illustrate the energy level coincidence for the excitation transfer reaction from 
He 21So metastables to the Ne 3s states.  The level 5s in figure 3 is the 5sʹ′ (3s2 and 3s3) and 5s (3s4 and 
3s5) of figure 4.  Also the 3p[K] levels of figure 2 and table I which are in Racah notation, are the 2p 
levels in the Paschen notation of Table 1. 

 
Although the ground states of He and Ne can be described in terms of L, S coupling, the excited 

states of Ne cannot as was pointed out in appendix I.  If the excited s states of Ne could be described by 
L, S coupling, then, since there is one missing p electron (or hole) with (l = 1 and s = 1/2) and one s 
electron (l = 0 and s = 1/2), there would be four excited states.  For S = 0 there would be a singlet 1P1 
and for S = 1 there would be three triplet states 3P2, 3P1 and 3P0 with the singlet state having higher 
energy than the triplet states.  Why?  The magnetic interaction produces an energy difference between 
the three triplet states and since the p electron is a result of the ion core being short one p electron from a 
closed shell, the three states are inverted in energy from what one would normally expect from a single p 
electron combining with an s electron.  This means that in the triplet, the 3P0 state is the highest in 
energy and the 3P2 is the lowest.  If L, S coupling were valid, one would expect the three triplet states to 
be close together compared to their separation from the singlet state.  In figure 4, the four excited states 
arising from the ps electronic configuration are labeled with both Russell-Saunders and Paschen 
notations.  It should be obvious that the predictions of L, S coupling are not really valid but the Russell-
Saunders notation is included to indicate the state which would be a singlet (↑↓) if it were valid.  As was 
pointed out in appendix I, the coupling is really j, l coupling which for the ps electronic configuration is 
equivalent to j, j coupling which may be easier to visualize (see White p 197).  As Russell-Saunders 
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coupling breaks down and proceeds toward j, j coupling (j, l coupling is intermediate between the two), 
the four states predicted by Russell-Saunders coupling change energy and move to states with the same J 
values in j, l coupling.  Using Figure 4 and Table I one can see that this is true. 

With this information in mind one can see why in a mixture of He and Ne the preferential 
selective excitation of the Ne 3s2 level rather than the 3s3 level occurs in the endothermic reaction 

 

€ 

He*21So(↑↓) + Ne1So(↑↓)→ He1So(↑↓) + Ne3s2(↑↓) −ΔE(386cm
−1)  

in which total spin is conserved, and a ΔE of 386 cm-1 (about 2 kT) has to be provided from kinetic 
energy supplied by the discharge. 

TABLE 1 

Wavelength (nm) Paschen Notation Racah Notation 

543.4 3s2 - 2p10 11 ]2/1[3]2/1[5 ps o −"  

588.1 3s2 - 2p9 31 ]2/1[3]2/1[5 ps o −"  

593.9 3s2 - 2p8 21 ]2/1[3]2/1[5 ps o −"  

604.6 3s2 - 2p7 11 ]2/1[3]2/1[5 ps o −"  

611.8 3s2 - 2p6 21 ]2/1[3]2/1[5 ps o −"  

629.4 3s2 - 2p5 11 ]2/1[3]2/1[5 ps o !−!  

[632.8] 3s2 - 2p4 21 ]2/1[3]2/1[5 ps o !−!  

635.2 3s2 - 2p3 01 ]2/1[3]2/1[5 ps o −"  

640.1 3s2 - 2p2 11 ]2/1[3]2/1[5 ps o !−!  

730.5 3s2 - 2p1 01 ]2/1[3]2/1[5 ps o !−!  

   

544.9 3s3 - 2p10 10 ]2/1[3]2/1[5 ps o −"  

589.8 3s3 - 2p9 30 ]2/1[3]2/1[5 ps o −"  

595.7 3s3 - 2p8 20 ]2/1[3]2/1[5 ps o −"  

606.5 3s3 - 2p7 10 ]2/1[3]2/1[5 ps o −"  

613.7 3s3 - 2p6 20 ]2/1[3]2/1[5 ps o −"  
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631.4 3s3 - 2p5 10 ]2/1[3]2/1[5 ps o !−!  

634.4 3s3 - 2p4 20 ]2/1[3]2/1[5 ps o !−!  

637.2 3s3 - 2p3 00 ]2/1[3]2/1[5 ps o −"  

642.2 3s3 - 2p2 10 ]2/1[3]2/1[5 ps o !−!  

733.2 3s3 - 2p1 00 ]2/1[3]2/1[5 ps o !−!  

Wavelengths are for transitions between 3s and 2p levels in Ne.  Levels with odd parity have a "o" as a 
right superscript.  Levels with even parity have no right superscript. 

TABLE I (continued) 

Wavelength (nm) Paschen Notation Racah Notation 

566.3 3s4 - 2p10 11 ]2/1[3]2/3[5 ps o −  

615.0 3s4 - 2p9 31 ]2/5[3]2/3[5 ps o −  

621.4 3s4 - 2p8 21 ]2/5[3]2/3[5 ps o −  

633.1 3s4 - 2p7 11 ]2/3[3]2/3[5 ps o −  

641.0 3s4 - 2p6 21 ]2/3[3]2/3[5 ps o −  

660.3 3s4 - 2p5 11 ]2/3[3]2/3[5 ps o !−  

664.1 3s4 - 2p4 21 ]2/3[3]2/3[5 ps o !−  

666.7 3s4 - 2p3 01 ]2/1[3]2/3[5 ps o −  

672.1 3s4 - 2p2 11 ]2/1[3]2/3[5 ps o !−  

772.5 3s3 - 2p1 01 ]2/1[3]2/3[5 ps o !−  

   

569.0 3s5 - 2p10 12 ]2/1[3]2/3[5 ps o −  

618.2 3s5 - 2p9 32 ]2/5[3]2/3[5 ps o −  

624.7 3s5 - 2p8 22 ]2/5[3]2/3[5 ps o −  

636.5 3s5 - 2p7 12 ]2/3[3]2/3[5 ps o −  
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644.5 3s5 - 2p6 22 ]2/3[3]2/3[5 ps o −  

664.0 3s5 - 2p5 12 ]2/3[3]2/3[5 ps o !−  

667.8 3s5 - 2p4 22 ]2/3[3]2/3[5 ps o !−  

670.5 3s5 - 2p3 03 ]2/1[3]2/3[5 ps o −  

676.0 3s5 - 2p2 12 ]2/1[3]2/3[5 ps o !−  

777.5 3s5 - 2p1 02 ]2/1[3]2/3[5 ps o !−  

When using this table one should be aware that not all lines listed actually appear because some 
transitions are forbidden.  Also, some of the lines, especially those with lower p values in the Paschen 
notation may be very faint. 
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APPENDIX III 

BEAM DIVERGENCE 

The following formulae and facts are useful in determining the observed beam divergence. 

1. Equation (56) of Bloom (page 74) gives ω1 the spot size at the mirror surface inside the cavity.  Note 
that ω1 is the 1/e radius of the field strength or the 1/e2 point of the intensity.  The radii of curvature 
of the mirrors, b1 and b2 are identical and are equal to 3 m.  The separation of the mirrors is d. 

2. The exit mirror is really a thin plano-concave lens so that ω1 inside the laser is very nearly ω1 just 
outside the laser. 

3. The curvature of the wavefront inside the laser is just the radius of curvature of the mirror which is 3 
m. 

4. Since the exit mirror is a plano-concave lens, the radius of curvature R1 just outside the laser is the 
radius of curvature just inside the laser divided by n.  You may take n, the index of refraction, to be 
about 1.5. 

You may derive this change in curvature using single surface formulae (see Jenkins and White pp. 
37-39).  The curvature of the wavefront inside the mirror (which is now acting as a lens) is the 
curvature of the mirror.  The curvature changes as it exits through the plane surface into air. 

5. Facts (1) and (4) allow you to calculate the beam radius ω1 and the beam curvature R1 of the 
gaussian beam just outside the exit mirror of the laser. 

6. Equation (69) of Bloom (page 103) allows you to find the effective distance z1 of the beam waist or 
focus from the exit mirror.  (This distance is different from what you would calculate if you were 
inside the laser.) 

7. Equation (70) allows you to calculate, ωo the beam waist or beam radius at the focal point. 

8. Equation (71) then allows you to find the beam radius ω at any position z outside the laser.  Here z is 
z1 plus the distance from the mirror to the point of measurement. 

9. For very large distances z, the half angle of beam divergence in radians is just ω/z as z → ∞.  This 
value of the half angle of the beam divergence is λ/(πωo). 

10. Calculations using (71) should be compared with measurements of spot sizes at least two different 
distances. 
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APPENDIX IV 

Chapter 1 of Principles of Lasers by O. Svelto 

See http://site.ebrary.com.myaccess.library.utoronto.ca/lib/utoronto/docDetail.action?docID=10375078 

or 

 http://books.google.ca/books?id=ioywRI5W2HEC&pg=PA1  
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APPENDIX V 

Longitudinal Modes in a Laser 
Consider the situation of two plane mirrors set parallel to one another.  To a first approximation 

the modes of this plane parallel resonator can be thought of as the superposition of two plane e.m. waves 
propagating in opposite directions along the cavity axis.  One should note the analogy with standing 
waves on a string.  The resonant frequencies are obtained by imposing the condition that the cavity 
length L must be an integral number of half-wavelengths so that the electric field of the e.m. standing 
waves is zero on the two mirrors. So 

 

€ 

L = n λ
2

 (1) 

and since 

 c = vλ (2) 

the resonant frequencies are given by 

 

€ 

v = n e
2L
" 

# 
$ 

% 

& 
'  (3) 

This treatment is not sufficient to account for spatial modes because it assumes that the waves 
are travelling exactly parallel to the axis when in fact the plane waves may be propagating at very small 
angles to the z axis. 

The modes of a rectangular cavity are well known and are given by 

 

€ 

v =
c
2

n
L
" 

# 
$ 
% 

& 
' 
2

+
m
2a
" 

# 
$ 

% 

& 
' 
2

+
l
2a
" 

# 
$ 

% 

& 
' 
2( 

) 
* 

+ 

, 
- 

1/ 2

  (4) 

where a is the lateral dimension of the cavity and n, m and l are integers giving the number of half-
wavelengths in the z, x and y directions.  To a good approximation the modes of the plane parallel 
resonator are described by the modes of the rectangular cavity when m and l are much less than n.  From 
equation (1), one can see that this approximation is valid for any values of m and l that might be 
investigated.  From equation (4), the frequency difference between two modes having the same values of 
m and l and whose n values differ by 1 is 

 

€ 

Δvn =
c
2L

 (5) 

These two modes differ only in their field distribution along the z axis (i.e. longitudinal).  For this reason 
Δvn is often referred to as the frequency difference between two consecutive longitudinal modes.  
Although the terms "longitudinal mode" and "transverse mode" are used, it is incorrect to think that 
there are two distinct types of modes.  In fact, any mode is specified by three numbers n, m and l.  The 
electric and magnetic fields of the modes are nearly perpendicular to the resonator axis.  The variation of 
these fields in a transverse direction is specified by l and m while the field variation in a longitudinal 
(i.e. axial) direction is specified by n, When one refers, rather loosely, to a (given) transverse mode, it 
means that one is considering a mode with given values for the transverse indexes (l, m), regardless of 
the value of n.  Accordingly a single transverse mode means a mode with a single value of the transverse 
indexes (l, m).  A similar interpretation can be applied to the "longitudinal modes".  Thus two 
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consecutive longitudinal modes means two modes with consecutive values of the longitudinal index n 
[i.e. n and (n+1) or (n-1)[. 

In practice one uses spherical mirrors instead of plane mirrors because the focussing property of 
spherical mirrors tends to concentrate the electric and magnetic fields along the resonator axis and thus 
light losses are avoided.  For a spherical mirror the focal length is f = R/2.  For this reason, the resonant 
cavity consisting of two identical spherical mirrors separated by their radius of curvature is said to be a 
confocal arrangement.  For this arrangement light losses are minimal.  The resonant frequencies for the 
confocal arrangement turn out to be 

 

€ 

v = c 2n + (1+ m + l)
4L

" 

# $ 
% 

& ' 
  (6) 

The frequency spectrum is given in Figure 5. 

 
Note that modes having the same value of 2n + m + 1 have the same resonance frequency 

although they have different spatial configurations.  These modes are said to be frequency degenerate.  
Note also that, unlike the plane mirror case where only plane waves were considered, the frequency 
spacing is now c/4L.  The frequency spacing between two modes with the same (l, m) values (e./g. 
TEM00) and with n differing by 1 (i.e. the frequency spacing between two adjacent longitudinal modes 
is, however, c/2L as for the plane case). 

As a numerical example, if R = L = 3 m, then in the apparatus for this experiment there will be 
beat frequencies at 25 and 50 MHz. 

If the mirrors are not identical or if the arrangement is not confocal, one generalizes to the case 
of a resonator consisting or two spherical mirrors with radii of curvature R1 and R2 separated by a 
distance L.  For convenience g1 and g2 are defined by 

 

€ 

g1 =1− L
R1

 (7) 

and 

 

€ 

g2 =1− L
R2

  (8) 

The resonance frequencies for the general spherical resonator are 

 

€ 

v =
c
2L

n + (l + m +1) cos
−1(g1g2)

1/ 2

π

$ 

% 
& 

' 

( 
)  (9) 

Equation (6) for a confocal resonator is a special case of equation (9) for if R1 = R2 = L, then from 
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equations (7) and (8), g1 = g2 = 0 and equation (9) reduces to equation (6). 
Note that the frequency degeneracy which occurs for a confocal resonator which is shown in 

figure 5 is lifted in the case of a general spherical resonator.  This is illustrated in Figure 6. 

 
As a numerical example, one can show that if F = 3m and L = 2.8m then in the apparatus for this 

experiment there will be beat frequencies for 25.7, 27.9, 51.3, 53.6 and 55.8 MHz.  The value of 53.6 
MHz is the value that would be obtained if one simply assumed a confocal arrangement with L = 2.8m. 
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APPENDIX VI 

Emission Spectrum of Neon 
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APPENDIX VII 

Gaussian Beam Optics 
Melles Griot provides a discussion of Gaussian Beam Optics in its catalogue at 

http://marketplace.idexop.com/store/SupportDocuments/All_About_Gaussian_Beam_OpticsWEB.pdf. 
Gaussian beams are confusing only because there are many different choices of the important 

parameters that various authors use to describe them.  It might help to keep in mind besides the 
wavelength there are only two independent parameters required.  One possible choice for the pair is the 
minimum beam waist w0 and its location in space.  A common practice is to place the beam waist at the 
origin of a cylindrical coordinate system, with r giving the radial coordinate and z the displacement 
along the beam direction. 

The catalogue gives the radius of curvature and the beam radius at a position z, in terms of z and 
w0.  Other possible choices involve replacing w0 by the far field divergence θ  or the Rayleigh 
range/distance zr.  The parameter zr is often called z0, the confocal parameter. 

A better discussion, than that given by the Melles Griot catalogue, of the propagation of 
Gaussian beams through optical components is in terms of the ABCD law.  See Yariv, Quantum 
Electronics, second edition equation 6.6-14a for a definition of the complex beam parameter and 
equation 6.7-6 for the ABCD rule.  [Note w(z) of Melles Griot = ω(z) of Yariv.]  Although not at all 

clear from Yariv, the values of A, B, C and D are the components of the 2 × 2 matrices 

€ 

AB
CD
" 

# 
$ 

% 

& 
' given on 

page 101 of Yariv.  To relate the beam radius and curvature at one plane to the radius and curvature at 
another plane from the product of the 2 × 2 matrices for all optical elements between the two planes.  
This will give you the net A, B, C and D to use in equation 6.7-6.  Thus you can find the new R and w.  
Once you have these, then the equations in the section on Real Beam Propagation in the Melles Griot 
catalogue permit you to find the location and size of the beam waist. 

A discussion of laser or Fabry-Perot cavities can be given in terms of Gaussian beam parameters.  
The connection is simple.  Mirrors are surfaces of constant phase.  Thus apply subscripts to R and z for 
mirror 1 and 2 and demand that z1 + z2 = L, the length of the laser.  You can then solve for z1, z2 and w0.  
The simplest case is the symmetric cavity.  You know that z1 = z2 = L/2.  Thus w0 can be found 
immediately.  A confocal interferometer has R1 = R2 = L.  It has the advantage that all modes, not just 
the (0,0) or Gaussian mode have a frequency that is a multiple of c/(4L). 


