
The potential

V (x) = − V0
cosh2(x/a)

is exactly solvable and so provides a test case for various approximation methods.
First as usual go to dimensionless coordinates with unit length l = a and unit energy
e = h̄2/(2ma2):
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(As usual on the following pages we will simplify by not writing the primes.) Note
that the potential resembles a finite square well in that as |x| → ∞ the potential
approaches zero. There are only a finite number of bound states (E < 0) in addition
to the continuum of free (E > 0) states. Note that as |x| → 0 the potential looks
quadratic, and so the low-energy solutions should look like SHO solutions (e.g., in
having equally spaced eigenenergies).

Here is a stacked-wavefunction plot showing the four lowest states for V ′

0 = 25:
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The exact eigenenergies are given by:
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for n = 0 up to the maximum value of n for which the value in square brackets ( [ ] )
is positive.



1. Use the Rayleigh-Ritz (variational) method to estimate the eigenenergy of the
ground state and first excited state for V0 = 25. Use the trial wavefunctions:

ψ0 = cosh(x) exp(−qx2)
ψ1 = x cosh(x) exp(−qx2)

Why are these reasonable choices? (Words please!) You will need to use Mathe-

matica to do the integrals. Since you have symmetry, you might as well integrate
only over the range [0,∞]:

$Assumptions=$Assumptions && {q>1}

f[x_]=Cosh[x] Exp[- q x^2]

ke=Integrate[f’[x]^2,{x,0,Infinity}]

pe=-25 Integrate[f[x]^2/Cosh[x]^2,{x,0,Infinity}]

n=Integrate[f[x]^2,{x,0,Infinity}]

e=(ke+pe)/n

(The first line is to convinceMathematica that the integral actually converges. . . if
q < 0 the integrand would blow up as |x| → ∞.) Use the Mathematica function
FindMinimum to do the minimization:
FindMinimum[e,{q,your guess here}]

Note that you must give Mathematica a starting guess for q. I’d plot E vs. q to
find a good guess for the minimum.

Compare your estimates to the exact eigenenergy given above. Plot both nor-
malized wavefunctions using code similar to:
Plot[Evaluate[f[x]/Sqrt[n] /. q->your result here],{x,-2,2}]

2. Use the Rayleigh-Ritz (variational) method to estimate the eigenenergy of the
ground state and first excited state for V0 = 25. Use the trial wavefunctions:

ψ0 = 1/ coshq(x)

ψ1 = sinh(x)/ coshq(x)

Why are these reasonable choices? (Words please!) These integrals are simple
enough that pencil and paper may be easier than Mathematica. Mathematica

will express some results in terms of the hypergeometric 2F1 whereas using the
below, you can do better:
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Since: Γ(x+1) = xΓ(x) = x!



and
sinh2(x) = cosh2(x)− 1

Compare your estimates to the exact eigenenergy given above. What can you
conclude? Plot both normalized wavefunctions as in #1.

3. Since the potential looks quadratic for x ∼ 0, we should be able to approximate
using SHO. Thus since:
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we have:
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where H0 is the SHO Hamiltonian with eigenenergies E ′(0)
n = (2n + 1). Thus
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Dividing through by h̄2/2ma2 to produce the dimensionless quantities intro-
duced for the 1/ cosh2 potential, we have:
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Whereas the exact answer is:
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Use first order perturbation theory to find how the x4 term affects the eigenen-
ergies. Use second order perturbation theory to find the effect on the ground
state. Hint: remember your raising and lower operators!



4. If we make the 1/ cosh2 potential very deep and very narrow then it should
approximate a delta function potential. Since:
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we can keep the delta function potential strength w = 2V0a a constant as
V0 → ∞ and a → 0. See if the limit of the 1/ cosh2 potential ground-state
eigenenergy agrees with the delta function potential results derived on the web.
What happens to the other bound states? (Note: in the above equations V0 is
the actual potential not the dimensionless V ′

0)

5. Find the WKB approximation for these eigenenergies. Hint: change variables
in the WKB integral to u = sinh(x), note closely the range of integration in u
and use the fact:
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P.S. For folks knowing contour integration: Prove the above integral for extra
credit.


