The potential

$$
V(x)=-\frac{V_{0}}{\cosh ^{2}(x / a)}
$$

is exactly solvable and so provides a test case for various approximation methods. First as usual go to dimensionless coordinates with unit length $l=a$ and unit energy $e=\hbar^{2} /\left(2 m a^{2}\right)$:

$$
\begin{aligned}
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi-\frac{V_{0}}{\cosh ^{2}(x / a)} \psi & =E \psi \\
\frac{-\hbar^{2}}{2 m a^{2}} \frac{\partial^{2}}{\partial x^{2}} \psi-\frac{V_{0}}{\cosh ^{2}\left(x^{\prime}\right)} \psi & =E \psi \\
-\frac{\partial^{2}}{\partial x^{2}} \psi-\frac{V_{0}^{\prime}}{\cosh ^{2}\left(x^{\prime}\right)} \psi & =E^{\prime} \psi
\end{aligned}
$$

(As usual on the following pages we will simplify by not writing the primes.) Note that the potential resembles a finite square well in that as $|x| \rightarrow \infty$ the potential approaches zero. There are only a finite number of bound states $(E<0)$ in addition to the continuum of free $(E>0)$ states. Note that as $|x| \rightarrow 0$ the potential looks quadratic, and so the low-energy solutions should look like SHO solutions (e.g., in having equally spaced eigenenergies).

Here is a stacked-wavefunction plot showing the four lowest states for $V_{0}^{\prime}=25$:

The exact eigenenergies are given by:

$$
E_{n}^{\prime}=-\left[\sqrt{V_{0}^{\prime}+\frac{1}{4}}-\left(n+\frac{1}{2}\right)\right]^{2}
$$

for $n=0$ up to the maximum value of n for which the value in square brackets ([]) is positive.

1. Use the Rayleigh-Ritz (variational) method to estimate the eigenenergy of the ground state and first excited state for $V_{0}=25$. Use the trial wavefunctions:

$$
\begin{aligned}
\psi_{0} & =\cosh (x) \exp \left(-q x^{2}\right) \\
\psi_{1} & =x \cosh (x) \exp \left(-q x^{2}\right)
\end{aligned}
$$

Why are these reasonable choices? (Words please!) You will need to use Mathematica to do the integrals. Since you have symmetry, you might as well integrate only over the range $[0, \infty]$:

```
$Assumptions=$Assumptions && {q>1}
f[x_]=Cosh[x] Exp[- q x^2]
ke=Integrate[f'[x]^2,{x,0,Infinity}]
pe=-25 Integrate[f[x]^2/Cosh[x]^2,{x,0,Infinity}]
n=Integrate[f[x]^2,{x,0,Infinity}]
e=(ke+pe)/n
```

(The first line is to convince Mathematica that the integral actually converges. . . if $q<0$ the integrand would blow up as $|x| \rightarrow \infty$.) Use the Mathematica function FindMinimum to do the minimization:
FindMinimum [e, \{q, your guess here\}]
Note that you must give Mathematica a starting guess for q. I'd plot E vs. q to find a good guess for the minimum.

Compare your estimates to the exact eigenenergy given above. Plot both normalized wavefunctions using code similar to:
Plot[Evaluate[f[x]/Sqrt[n] /. q->your result here], $\{x,-2,2\}]$
2. Use the Rayleigh-Ritz (variational) method to estimate the eigenenergy of the ground state and first excited state for $V_{0}=25$. Use the trial wavefunctions:

$$
\begin{aligned}
& \psi_{0}=1 / \cosh ^{q}(x) \\
& \psi_{1}=\sinh (x) / \cosh ^{q}(x)
\end{aligned}
$$

Why are these reasonable choices? (Words please!) These integrals are simple enough that pencil and paper may be easier than Mathematica. Mathematica will express some results in terms of the hypergeometric ${ }_{2} F_{1}$ whereas using the below, you can do better:

$$
\int_{0}^{\infty} \cosh ^{-2 q}(x) d x=\frac{\sqrt{\pi}}{2} \frac{\Gamma(q)}{\Gamma\left(q+\frac{1}{2}\right)}
$$

So:

$$
\frac{\left\langle\psi_{0}\right| \cosh ^{-2}\left|\psi_{0}\right\rangle}{\left\langle\psi_{0} \mid \psi_{0}\right\rangle}=\frac{\Gamma(q+1) / \Gamma\left(q+\frac{3}{2}\right)}{\Gamma(q) / \Gamma\left(q+\frac{1}{2}\right)}=\frac{q}{q+\frac{1}{2}} \quad \text { Since: } \Gamma(x+1)=x \Gamma(x)=x \text { ! }
$$

and

$$
\sinh ^{2}(x)=\cosh ^{2}(x)-1
$$

Compare your estimates to the exact eigenenergy given above. What can you conclude? Plot both normalized wavefunctions as in \#1.
3. Since the potential looks quadratic for $x \sim 0$, we should be able to approximate using SHO. Thus since:

$$
\cosh ^{-2}(y)=1-y^{2}+\frac{2}{3} y^{4}-\frac{17}{45} y^{6}+\cdots
$$

we have:

$$
\begin{aligned}
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi-\frac{V_{0}}{\cosh ^{2}(x / a)} \psi & =E \psi \\
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{\prime 2}} \psi+\frac{V_{0}}{a^{2}} x^{2} \psi-\frac{V_{0} 2}{3 a^{4}} x^{4} \psi & \approx\left(E+V_{0}\right) \psi \\
-A \frac{\partial^{2}}{\partial x^{2}} \psi+B x^{2} \psi-B \frac{2}{3 a^{2}} x^{4} \psi & \approx\left(E+V_{0}\right) \psi
\end{aligned}
$$

Using the length scale: $l=(A / B)^{\frac{1}{4}}$ and energy scale: $e=(A B)^{\frac{1}{2}}$, we have:

$$
\begin{aligned}
\frac{-A}{(A / B)^{\frac{1}{2}}} \frac{\partial^{2}}{\partial x^{\prime 2}} \psi+B(A / B)^{\frac{1}{2}} x^{\prime 2} \psi-B(A / B)^{\frac{1}{2}} \frac{2 l^{2}}{3 a^{2}} x^{44} \psi & \approx\left(E+V_{0}\right) \psi \\
-\frac{\partial^{2}}{\partial x^{\prime 2}} \psi+x^{\prime 2} \psi-\frac{2 l^{2}}{3 a^{2}} x^{\prime 4} \psi & \approx\left(E^{\prime}+V_{0}^{\prime}\right) \psi \\
H_{0} \psi-\frac{2 l^{2}}{3 a^{2}} x^{\prime 4} \psi & \approx\left(E^{\prime}+V_{0}^{\prime}\right) \psi
\end{aligned}
$$

where H_{0} is the SHO Hamiltonian with eigenenergies $E_{n}^{\prime(0)}=(2 n+1)$. Thus $E^{\prime}+V_{0}^{\prime}=\left(E+V_{0}\right) / e=2 n+1$ or

$$
E=-V_{0}+\left(\frac{\hbar^{2}}{2 m a^{2}} V_{0}\right)^{\frac{1}{2}}(2 n+1)
$$

Dividing through by $\hbar^{2} / 2 m a^{2}$ to produce the dimensionless quantities introduced for the $1 / \cosh ^{2}$ potential, we have:

$$
E^{\prime}=-V_{0}^{\prime}+\left(V_{0}^{\prime}\right)^{\frac{1}{2}}(2 n+1)
$$

Whereas the exact answer is:

$$
E^{\prime}=-\left[\sqrt{V_{0}^{\prime}+\frac{1}{4}}-\left(n+\frac{1}{2}\right)\right]^{2}=-\left(V_{0}^{\prime}+\frac{1}{4}\right)+\left(V_{0}^{\prime}+\frac{1}{4}\right)^{\frac{1}{2}}(2 n+1)-\left(n+\frac{1}{2}\right)^{2}
$$

Use first order perturbation theory to find how the x^{4} term affects the eigenenergies. Use second order perturbation theory to find the effect on the ground state. Hint: remember your raising and lower operators!
4. If we make the $1 / \cosh ^{2}$ potential very deep and very narrow then it should approximate a delta function potential. Since:

$$
\begin{aligned}
\int_{0}^{\infty} V(x) d x & =-\int_{0}^{\infty} V_{0} / \cosh ^{2}(x / a) d x=-V_{0} a \int_{0}^{\infty} 1 / \cosh ^{2}(y) d y \\
& =-V_{0} a \int_{0}^{\infty} \tanh ^{\prime}(y) d y=-V_{0} a
\end{aligned}
$$

we can keep the delta function potential strength $w=2 V_{0} a$ a constant as $V_{0} \rightarrow \infty$ and $a \rightarrow 0$. See if the limit of the $1 / \cosh ^{2}$ potential ground-state eigenenergy agrees with the delta function potential results derived on the web. What happens to the other bound states? (Note: in the above equations V_{0} is the actual potential not the dimensionless V_{0}^{\prime})
5. Find the WKB approximation for these eigenenergies. Hint: change variables in the WKB integral to $u=\sinh (x)$, note closely the range of integration in u and use the fact:

$$
\int_{0}^{A} \frac{\sqrt{A^{2}-u^{2}}}{1+u^{2}} d u=\frac{\pi}{2}\left(\sqrt{1+A^{2}}-1\right)
$$

P.S. For folks knowing contour integration: Prove the above integral for extra credit.

