1. Consider the harmonic oscillator (with, as usual, spring constant: $k=m \omega^{2}$ ) in one dimension with orthonormal energy eigenfunctions (a.k.a. stationary states) denoted by $\psi_{n}(x)$ of energy $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)$.

$$
\Psi(x)=\frac{1}{\sqrt{6}}\left(\psi_{1}(x)+2 i \psi_{2}(x)+\psi_{3}(x)\right)
$$

Calculate $\langle\Psi| p^{2}|\Psi\rangle$ using raising and lowering operators. What is the probability that an energy of $\frac{5}{2} \hbar \omega$ would be measured for this state?
2. Prove the following formulae for commutators. In the below $f(x)$ is an arbitrary function and $p$ is the momentum operator.
(a) $[p, x] f(x)=\frac{\hbar}{i} f(x)$
(b) $[p, V(x)] f(x)=\frac{\hbar}{i} \frac{\partial V}{\partial x} f(x)$
(c) $\left[p^{2}, x\right] f(x)=2 \frac{\hbar}{i} p f(x)$
3. Consider the particle-in-a-box problem with $V(x)=0$ for $0<x<L$, but $V(x)=\infty$ elsewhere with orthonormal energy eigenfunctions denoted $\psi_{n}(x)$ for ( $n=1,2,3, \ldots$ ):
$H \psi_{n}=E_{n} \psi_{n} \quad$ where: $\quad E_{n}=\frac{(k \hbar)^{2}}{2 m} \quad \psi_{n}(x)=\sqrt{\frac{2}{L}} \sin (k x) \quad k=\frac{n \pi}{L}$
Normalize the wave function

$$
\Psi(x)=\psi_{1}(x)+i \psi_{2}(x)
$$

Write down the expression for $\Psi(x, t)$ (i.e., a formula for $\psi$ at future times). Directly calculate $\langle\Psi(x, t)| p|\Psi(x, t)\rangle$ and $\langle\Psi(x, t)| x|\Psi(x, t)\rangle$. Show that your answers satisfy the equation:

$$
\frac{d}{d t}\langle\Psi(x, t)| x|\Psi(x, t)\rangle=\frac{\langle\Psi(x, t)| p|\Psi(x, t)\rangle}{m}
$$

The following integrals may be of use:

$$
\begin{aligned}
\left\langle\psi_{1}\right| x\left|\psi_{1}\right\rangle & =L / 2 & \left\langle\psi_{1}\right| p\left|\psi_{1}\right\rangle & =0 \\
\left\langle\psi_{2}\right| x\left|\psi_{2}\right\rangle & =L / 2 & \left\langle\psi_{2}\right| p\left|\psi_{2}\right\rangle & =0 \\
\left\langle\psi_{2}\right| x\left|\psi_{1}\right\rangle & =-\frac{16}{9 \pi^{2}} L & \left\langle\psi_{2}\right| p\left|\psi_{1}\right\rangle & =\frac{8}{3} \frac{\hbar}{i L}
\end{aligned}
$$

4. Consider the below operators (matrices):

| Operator | Eigen |  | Eigen |  |
| :---: | :---: | :---: | :---: | :---: |
| vector | value | vector | value |  |
| $S_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ | $\binom{1}{1}$ | +1 |  | -1 |
| $S_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ | $\binom{1}{i}$ |  | $\binom{i}{1}$ |  |
| $S_{3}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$ | $\binom{1}{0}$ | +1 | $\binom{0}{1}$ | -1 |
| $S_{\hat{\mathbf{r}}}=\left(\begin{array}{cc}\cos \theta & e^{-i \phi} \sin \theta \\ e^{+i \phi} \sin \theta & -\cos \theta\end{array}\right)$ | $\binom{c}{e^{+i \phi} s}$ | +1 | $\binom{e^{-i \phi} s}{-c}$ | -1 |

For the eigenvectors of $S_{\hat{\mathbf{r}}}$ I used the shorthand: $c \equiv \cos (\theta / 2)$ and $s \equiv \sin (\theta / 2)$. The parameters $\theta, \phi$ should be considered fixed real constants. Note of no consequence: particular values of $\theta, \phi$ can result in $S_{\hat{\mathbf{r}}}$ being equal to any of the $S_{i}$, for example: $\theta=0, \phi=0 \Rightarrow S_{\hat{\mathbf{r}}}=S_{3} ; \theta=\pi / 2, \phi=0 \Rightarrow S_{\hat{\mathbf{r}}}=S_{1}$; $\theta=\pi / 2, \phi=\pi / 2 \Rightarrow S_{\hat{\mathbf{r}}}=S_{2}$.
(a) Is $S_{1}$ Unitary? Is $S_{2}$ Hermitian?
(b) Determine and fill in the three missing entries in the above table: 2 eigenvalues and 1 eigenvector.
(c) Show that the two eigenvectors of $S_{\hat{\mathbf{r}}}$ are normalized and orthogonal.
(d) If the particle is known to be in the state $\binom{0}{1}$, find the probability that a measurement of $S_{\hat{\mathbf{r}}}$ results in +1 .
(e) Find $\left[S_{1}, S_{2}\right]$.

