Recall problem 3.39 (p. 129) where you showed the the momentum operator p "generated translation" in the sense that:

$$
f(x+s)=e^{i s p / \hbar} f(x)
$$

Graphically, $f(x+s)$ is pushed to the left ${ }^{1}$ of $f(x)$: 'translated'. This means, for example, if $f(x)$ has a maximum at $x=0, e^{i s p / \hbar} f(x)$ will have a maximum at $x=-s$.

In an exactly analogous fashion show that L_{z} generates rotations about the z-axis, in the sense that:

$$
f(\phi+s)=e^{i s L_{z} / \hbar} f(\phi)
$$

Directly calculate the result of $e^{i s L_{z} / \hbar}$ operating on the function $f(\phi)=\phi^{2}$ and show that the result is $(\phi+s)^{2}$.

Similarly it would be nice to show that L_{y} generates rotations about the y-axis, but L_{y} has a fairly complex form, which makes such a proof difficult. It is simpler (if not exactly simple) to take a particular function and show that it is rotated. The function I want you to work with is

$$
\cos \theta=\hat{\mathbf{r}} \cdot \hat{\mathbf{k}}
$$

This function takes its maximum on the positive z axis; if rotated it will take its maximum 'before' the z axis, i.e., along the ray defined by the backward rotated $\hat{\mathbf{k}}$ vector:

$$
\hat{\mathbf{e}}=(-\sin s, 0, \cos s)
$$

so the result of $e^{i s L_{y} / \hbar}$ operating on $\cos \theta$ should be:

$$
\hat{\mathbf{r}} \cdot \hat{\mathbf{e}}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \cdot(-\sin s, 0, \cos s)=\cos \theta \cos s-\sin \theta \cos \phi \sin s
$$

You must therefore calculate:

$$
e^{i s L_{y} / \hbar} \cos \theta=\sum_{k=0}^{\infty} \frac{(i s / \hbar)^{k}}{k!} L_{y}^{k} \cos \theta
$$

where $L_{y}^{k} \cos \theta$ means that L_{y} operates k times on the function $\cos \theta$, and show that it produces the above result. Calculating an infinite number of derivatives does not sound easy, but a pattern should appear. Do remember the Taylor's expansion for the trigonometric functions:

$$
\sin s=s-\frac{s^{3}}{3!}+\frac{s^{5}}{5!}-\frac{s^{7}}{7!}+\ldots \quad \cos s=1-\frac{s^{2}}{2!}+\frac{s^{4}}{4!}-\frac{s^{6}}{6!}+\ldots
$$

[^0]
(a) The function $\cos \theta$ has its maximum at the top pole.

(b) That maximum (the pole) now occurs at a negative y angle on the back-rotated (tilted) sphere

[^0]: ${ }^{1}$ An equivalent formulation is that the function was unchanged but the origin shifted to the right, so that the maximum previously at $x=0$ now occurs at the coordinate $x=-s$.

