Consider the problem of an infinite square well (with V' = 0 for z € [0, L] and V = oo otherwise),
with a perturbing attractive delta function at the midpoint of the well (H' = —ad(x — L/2)). The
unperturbed problem has eigenfunctions/eigenenergies given by:
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where we have written eigenenegies in terms of the unit 2A2 /mL? to match the results below.
Notice a confusing point: if n is odd (1,3, 5,...), the eigenfunction is reflection symmetric (‘even’),
whereas if n is even (2,4, 6, .. .), the eigenfunction is reflection antisymmetric (‘odd’) and hence has
a zero at the well midpoint. That is u,(L/2) = 0 — right where H’ is non-zero, so the integral:
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is zero if either m or n is even. As a result perturbation theory reports that the n=even states are
unaffected by H', i.e., E(a) = E,, = constant.

For the n, m=odd states we use:
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to conclude:
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From Mathematica we learn:
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so using the shorthand ¢ = mLa/2h? we have:
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For the exact eigenenergies, we note that except at x = L/2, V = 0 so ¢  sin(kx). Integrating
Schrédinger’s across the delta function yields:
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Using the even symmetry of a n =odd state: AvY/'(L/2) = —2¢'(L~/2); ¥ o sin(kx) produces:
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Where we have defined the shorthand § = kL /2. This transcendental equation looks hard to solve.
If we graph the lhs as a function of 8, we can see places where the curve would intersect a constant
(horizontal) g¢:
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Notice that for small ¢, such intersections would occur near the zeros of cot 6, i.e., § = odd /2
(and so the corresponding energy would equal the unperturbed energy), whereas for large ¢ such
intersections would approach (but be a bit above) the asymptotes of cot @, i.e., § = even 7/2 (and
so the corresponding energy would a bit above the unperturbed energy levels for n =even). For
g > 1 there will be no solution in the range 6 € [0,7/2]. .. this is discussed below.

Using Mathematica we can find a series expression for 62 in terms of ¢:

Series[t Cot[t],{t,(2 k-1) Pi/2,6}]
Simplify [’ ,Element [k, Integers]]
InverseSeries[%,q]

%2 /. k->(n+1)/2
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Do remember that the isolated delta function has a single bound state (E < 0):
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so for sufficiently strong delta function we expect the ground state energy to go negative. In fact for
q > 1, the small 8 solution to the equation: 6 cot # = g disappears. To find the ground state energy
in this situation we must seek solutions of the form: v o sinh(kz) with energy £ = —(hk)?/2m,
which proceeds exactly as above resulting in
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Again graphing the lhs as a function of # allows you to see solutions:
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In this case, notice that as ¢ — 17, solution (intersection) § — 0, and as ¢ — oo, § — ¢

Finally, putting together the exact solution with the second order perturbation result we can graph
E as a function of ¢ for the three lowest energy levels. For n = 3 the perturbative result lies slightly
below the exact result; for n = 1 the perturbative result lies slightly above the exact result. Of
course, n = 2 is unaffected by the perturbation.
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