
Consider the problem of an infinite square well (with V = 0 for x ∈ [0, L] and V = ∞ otherwise),
with a perturbing attractive delta function at the midpoint of the well (H ′ = −αδ(x− L/2)). The
unperturbed problem has eigenfunctions/eigenenergies given by:
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where we have written eigenenegies in terms of the unit 2h̄2/mL2 to match the results below.
Notice a confusing point: if n is odd (1, 3, 5, . . .), the eigenfunction is reflection symmetric (‘even’),
whereas if n is even (2, 4, 6, . . .), the eigenfunction is reflection antisymmetric (‘odd’) and hence has
a zero at the well midpoint. That is un(L/2) = 0 — right where H ′ is non-zero, so the integral:
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is zero if either m or n is even. As a result perturbation theory reports that the n=even states are
unaffected by H ′, i.e., E(α) = En = constant.
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For the exact eigenenergies, we note that except at x = L/2, V = 0 so ψ ∝ sin(kx). Integrating
Schrödinger’s across the delta function yields:
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Using the even symmetry of a n =odd state: ∆ψ′(L/2) = −2ψ′(L−/2); ψ ∝ sin(kx) produces:
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Where we have defined the shorthand θ = kL/2. This transcendental equation looks hard to solve.
If we graph the lhs as a function of θ, we can see places where the curve would intersect a constant
(horizontal) q:
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Notice that for small q, such intersections would occur near the zeros of cot θ, i.e., θ = odd π/2
(and so the corresponding energy would equal the unperturbed energy), whereas for large q such
intersections would approach (but be a bit above) the asymptotes of cot θ, i.e., θ = even π/2 (and
so the corresponding energy would a bit above the unperturbed energy levels for n =even). For
q > 1 there will be no solution in the range θ ∈ [0, π/2]. . . this is discussed below.

Using Mathematica we can find a series expression for θ2 in terms of q:
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Do remember that the isolated delta function has a single bound state (E < 0):
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so for sufficiently strong delta function we expect the ground state energy to go negative. In fact for
q > 1, the small θ solution to the equation: θ cot θ = q disappears. To find the ground state energy
in this situation we must seek solutions of the form: ψ ∝ sinh(kx) with energy E = −(h̄k)2/2m,
which proceeds exactly as above resulting in
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Again graphing the lhs as a function of θ allows you to see solutions:
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In this case, notice that as q → 1+, solution (intersection) θ → 0, and as q → ∞, θ → q

Finally, putting together the exact solution with the second order perturbation result we can graphE as a function of q for the three lowest energy levels. For n = 3 the perturbative result lies slightly
below the exact result; for n = 1 the perturbative result lies slightly above the exact result. Of
course, n = 2 is unaffected by the perturbation.
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