Consider the problem of an infinite square well (with $V=0$ for $x \in[0, L]$ and $V=\infty$ otherwise), with a perturbing attractive delta function at the midpoint of the well $\left(H^{\prime}=-\alpha \delta(x-L / 2)\right.$). The unperturbed problem has eigenfunctions/eigenenergies given by:

$$
E_{n}=\frac{(k \hbar)^{2}}{2 m}=\frac{2 \hbar^{2}}{m L^{2}}\left(\frac{k L}{2}\right)^{2}=\frac{2 \hbar^{2}}{m L^{2}}\left(\frac{n \pi}{2}\right)^{2} \quad u_{n}(x)=\sqrt{\frac{2}{L}} \sin (k x) \quad \text { where } \quad k=\frac{n \pi}{L}
$$

where we have written eigenenegies in terms of the unit $2 \hbar^{2} / m L^{2}$ to match the results below. Notice a confusing point: if n is odd ($1,3,5, \ldots$), the eigenfunction is reflection symmetric ('even'), whereas if n is even $(2,4,6, \ldots)$, the eigenfunction is reflection antisymmetric ('odd') and hence has a zero at the well midpoint. That is $u_{n}(L / 2)=0$ - right where H^{\prime} is non-zero, so the integral:

$$
\int_{0}^{L} u_{m}(x) H^{\prime} u_{n}(x) d x=\langle m| H^{\prime}|n\rangle=H_{m n}^{\prime}
$$

is zero if either m or n is even. As a result perturbation theory reports that the $n=$ even states are unaffected by H^{\prime}, i.e., $\mathbb{E}(\alpha)=E_{n}=$ constant.

For the $n, m=o d d$ states we use:

$$
\langle m| H^{\prime}|n\rangle=H_{m n}^{\prime}=-\frac{2}{L} \alpha
$$

to conclude:

$$
\begin{aligned}
\mathbb{E}(\alpha) & =E_{n}-\frac{2}{L} \alpha+\sum_{k \neq n}^{\text {odd }} \frac{(2 \alpha / L)^{2}}{\frac{(\hbar \pi)^{2}}{2 m L^{2}}\left(n^{2}-k^{2}\right)}+\cdots \\
& =\frac{2 \hbar^{2}}{m L^{2}}\left\{\left(\frac{n \pi}{2}\right)^{2}-2 \frac{m L \alpha}{2 \hbar^{2}}+\frac{16}{\pi^{2}}\left(\frac{m L \alpha}{2 \hbar^{2}}\right)^{2} \sum_{k \neq n}^{\text {odd }} \frac{1}{n^{2}-k^{2}}+\cdots\right\}
\end{aligned}
$$

From Mathematica we learn:

$$
\sum_{k \neq n}^{\text {odd }} \frac{1}{n^{2}-k^{2}}=-\frac{1}{4 n^{2}}
$$

so using the shorthand $q=m L \alpha / 2 \hbar^{2}$ we have:

$$
\mathbb{E}(\alpha)=\frac{2 \hbar^{2}}{m L^{2}}\left\{\left(\frac{n \pi}{2}\right)^{2}-2 q-\frac{q^{2}}{(n \pi / 2)^{2}}+\cdots\right\}
$$

For the exact eigenenergies, we note that except at $x=L / 2, V=0$ so $\psi \propto \sin (k x)$. Integrating Schrödinger's across the delta function yields:

$$
\frac{-\hbar^{2}}{2 m} \Delta \psi^{\prime}(L / 2)=\alpha \psi(L / 2)
$$

Using the even symmetry of a $n=$ odd state: $\Delta \psi^{\prime}(L / 2)=-2 \psi^{\prime}\left(L^{-} / 2\right) ; \psi \propto \sin (k x)$ produces:

$$
\begin{aligned}
\frac{-\hbar^{2}}{2 m} \frac{-2 k \cos (k L / 2)}{\sin (k L / 2)} & =\alpha \\
(k L / 2) \cot (k L / 2) & =\frac{m \alpha L}{2 \hbar^{2}} \\
\theta \cot \theta & =q
\end{aligned}
$$

Where we have defined the shorthand $\theta=k L / 2$. This transcendental equation looks hard to solve. If we graph the lhs as a function of θ, we can see places where the curve would intersect a constant (horizontal) q :

Notice that for small q, such intersections would occur near the zeros of $\cot \theta$, i.e., $\theta=\operatorname{odd} \pi / 2$ (and so the corresponding energy would equal the unperturbed energy), whereas for large q such intersections would approach (but be a bit above) the asymptotes of $\cot \theta$, i.e., $\theta=\operatorname{even} \pi / 2$ (and so the corresponding energy would a bit above the unperturbed energy levels for $n=$ even). For $q>1$ there will be no solution in the range $\theta \in[0, \pi / 2] \ldots$ this is discussed below.

Using Mathematica we can find a series expression for θ^{2} in terms of q :

```
Series[t Cot[t],{t,(2 k-1) Pi/2,6}]
Simplify[%,Element[k,Integers]]
InverseSeries[%,q]
%^2 /. k-> (n+1)/2
```

$$
\theta^{2}=\left(\frac{n \pi}{2}\right)^{2}-2 q-\frac{q^{2}}{(n \pi / 2)^{2}}+\frac{2\left((n \pi / 2)^{2}-3\right)}{3(n \pi / 2)^{4}} q^{3}+\cdots
$$

and

$$
\mathbb{E}(\alpha)=\frac{2 \hbar^{2}}{m L^{2}} \theta^{2}
$$

Do remember that the isolated delta function has a single bound state $(E<0)$:

$$
E=-\frac{\hbar^{2}}{2 m}\left(\frac{m \alpha}{\hbar^{2}}\right)^{2}=-\frac{2 \hbar^{2}}{m L^{2}} q^{2}
$$

so for sufficiently strong delta function we expect the ground state energy to go negative. In fact for $q>1$, the small θ solution to the equation: $\theta \cot \theta=q$ disappears. To find the ground state energy in this situation we must seek solutions of the form: $\psi \propto \sinh (k x)$ with energy $E=-(\hbar k)^{2} / 2 m$, which proceeds exactly as above resulting in

$$
\theta \operatorname{coth} \theta=q \quad \text { where: } E=-\frac{2 \hbar^{2}}{m L^{2}} \theta^{2}
$$

Again graphing the lhs as a function of θ allows you to see solutions:

In this case, notice that as $q \rightarrow 1^{+}$, solution (intersection) $\theta \rightarrow 0$, and as $q \rightarrow \infty, \theta \rightarrow q$
Finally, putting together the exact solution with the second order perturbation result we can graph \mathbb{E} as a function of q for the three lowest energy levels. For $n=3$ the perturbative result lies slightly below the exact result; for $n=1$ the perturbative result lies slightly above the exact result. Of course, $n=2$ is unaffected by the perturbation.

