
The potential

V (x) = − V0

cosh2(x/a)

is exactly solvable and so provides a test case for various approximation methods.
First as usual go to dimensionless coordinates with unit length l = a and unit energy
e = h̄2/(2ma2):
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(As usual we now simplify by not writing the primes.) Note that the potential re-
sembles a finite square well in that as |x| → ∞ the potential approaches zero. There
are only a finite number of bound states (E < 0) in addition to the continuum of
free (E > 0) states. Note that as |x| → 0 the potential looks quadratic, and so the
low-energy solutions should look like SHO solutions (e.g., in having equally spaced
eigenenergies).

Here is a stacked-wavefunction plot showing the four lowest states for V0 = 25:
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The exact eigenenergies are given by:

En = −
[

√
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4
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2
)
]2

for n = 0 up to the maximum value of n for which the value in square brackets ( [ ] )
is positive.



1. Use the Rayleigh-Ritz (variational) method to estimate the eigenenergy of the
ground state and first excited state for V0 = 25. Use the trial wavefunctions:

ψ0 = cosh(x) exp(−qx2)

ψ1 = x cosh(x) exp(−qx2)

Why are these reasonable choices? You will need to use Mathematica to do the
integrals. Since you have symmetry, you might as well integrate only over the
range [0,∞]:

q /: Re[q] = 2

f[x_]=Cosh[x] Exp[- q x^2]

ke=Integrate[f’[x]^2,{x,0,Infinity}]

pe=-25 Integrate[f[x]^2/Cosh[x]^2,{x,0,Infinity}]

n=Integrate[f[x]^2,{x,0,Infinity}]

(The first line is some nonsense to convince Mathematica that the integral ac-
tually converges. . . if q < 0 the integrand would blow up as |x| → ∞.) Use the
Mathematica function FindMinimum to do the minimization:
FindMinimum[e,{q,your guess here}]

Note that you must give Mathematica a starting guess for q. I’d plot E vs. q to
find a good guess for the minimum.

Compare your estimates to the exact eigenenergy given above. Plot both nor-
malized wavefunctions using code similar to:
Plot[Evaluate[f[x]/Sqrt[n] /. q->your result here],{x,-2,2}]

2. Use the Rayleigh-Ritz (variational) method to estimate the eigenenergy of the
ground state and first excited state for V0 = 25. Use the trial wavefunctions:

ψ0 = 1/ coshq(x)

ψ1 = sinh(x)/ coshq(x)

Why are these reasonable choices? These integrals are simple enough that pencil
and paper may be easier than Mathematica. Note that:
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Since: Γ(x+1) = xΓ(x) = x!

Compare your estimates to the exact eigenenergy given above. What can you
conclude? Plot both normalized wavefunctions as in #1.



3. Since the potential looks quadratic for x ∼ 0, we should be able to approximate
using SHO. Thus since:

cosh−2(y) = 1 − y2 +
2
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we have:
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where H0 is the SHO Hamiltonian with eigenenergies E ′(0)
n = (2n + 1). Thus
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Dividing through by h̄2/2ma2 to produce the dimensionless quantities intro-
duced for the 1/ cosh2 potential, we have:
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Whereas the exact answer is:
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Use first order perturbation theory to find how the x4 term affects the eigenen-
ergies. Use second order perturbation theory to find the effect on the ground
state. Hint: remember your raising and lower operators!

4. If we make the 1/ cosh2 potential very deep and very narrow then it should
approximate a delta function potential. Since:
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we can keep the delta function potential strength w = 2V0a a constant as
V0 → ∞ and a → 0. See if the limit of the 1/ cosh2 potential ground-state
eigenenergy agrees with the delta function potential results derived on the web.
What happens to the other bound states?

5. Find the WKB approximation for these eigenenergies. Hint: change variables
in the WKB integral to u = sinh(x), note closely the range of integration in u
and use the fact:
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P.S. For folks knowing contour integration: Prove the above integral for extra
credit.


