The potential

$$
V(x)=-\frac{V_{0}}{\cosh ^{2}(x / a)}
$$

is exactly solvable and so provides a test case for various approximation methods. First as usual go to dimensionless coordinates with unit length $l=a$ and unit energy $e=\hbar^{2} /\left(2 m a^{2}\right)$:

$$
\begin{aligned}
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi-\frac{V_{0}}{\cosh ^{2}(x / a)} \psi & =E \psi \\
\frac{-\hbar^{2}}{2 m a^{2}} \frac{\partial^{2}}{\partial x^{\prime 2}} \psi-\frac{V_{0}}{\cosh ^{2}\left(x^{\prime}\right)} \psi & =E \psi \\
-\frac{\partial^{2}}{\partial x^{\prime 2}} \psi-\frac{V_{0}^{\prime}}{\cosh ^{2}\left(x^{\prime}\right)} \psi & =E^{\prime} \psi
\end{aligned}
$$

(As usual we now simplify by not writing the primes.) Note that the potential resembles a finite square well in that as $|x| \rightarrow \infty$ the potential approaches zero. There are only a finite number of bound states $(E<0)$ in addition to the continuum of free $(E>0)$ states. Note that as $|x| \rightarrow 0$ the potential looks quadratic, and so the low-energy solutions should look like SHO solutions (e.g., in having equally spaced eigenenergies).

Here is a stacked-wavefunction plot showing the four lowest states for $V_{0}=25$:

The exact eigenenergies are given by:

$$
E_{n}=-\left[\sqrt{V_{0}+\frac{1}{4}}-\left(n+\frac{1}{2}\right)\right]^{2}
$$

for $n=0$ up to the maximum value of n for which the value in square brackets ([]) is positive.

1. Use the Rayleigh-Ritz (variational) method to estimate the eigenenergy of the ground state and first excited state for $V_{0}=25$. Use the trial wavefunctions:

$$
\begin{aligned}
\psi_{0} & =\cosh (x) \exp \left(-q x^{2}\right) \\
\psi_{1} & =x \cosh (x) \exp \left(-q x^{2}\right)
\end{aligned}
$$

Why are these reasonable choices? You will need to use Mathematica to do the integrals. Since you have symmetry, you might as well integrate only over the range $[0, \infty]$:

```
q /: Re[q] = 2
f[x_]=Cosh[x] Exp[- q x^2]
ke=Integrate[f'[x]^2,{x,0,Infinity}]
pe=-25 Integrate[f[x]^2/Cosh[x]^2,{x,0,Infinity}]
n=Integrate[f[x]^2,{x,0,Infinity}]
```

(The first line is some nonsense to convince Mathematica that the integral actually converges... if $q<0$ the integrand would blow up as $|x| \rightarrow \infty$.) Use the Mathematica function FindMinimum to do the minimization:
FindMinimum [e, \{q, your guess here\}]
Note that you must give Mathematica a starting guess for q. I'd plot E vs. q to find a good guess for the minimum.

Compare your estimates to the exact eigenenergy given above. Plot both normalized wavefunctions using code similar to:
Plot[Evaluate[f[x]/Sqrt[n] /. q->your result here], $\{\mathrm{x},-2,2\}$]
2. Use the Rayleigh-Ritz (variational) method to estimate the eigenenergy of the ground state and first excited state for $V_{0}=25$. Use the trial wavefunctions:

$$
\begin{aligned}
\psi_{0} & =1 / \cosh ^{q}(x) \\
\psi_{1} & =\sinh (x) / \cosh ^{q}(x)
\end{aligned}
$$

Why are these reasonable choices? These integrals are simple enough that pencil and paper may be easier than Mathematica. Note that:

$$
\int_{0}^{\infty} \cosh ^{-2 q}(x) d x=\frac{\sqrt{\pi}}{2} \frac{\Gamma(q)}{\Gamma\left(q+\frac{1}{2}\right)}
$$

So:

$$
\frac{\left\langle\psi_{0}\right| \cosh ^{-2}\left|\psi_{0}\right\rangle}{\left\langle\psi_{0} \mid \psi_{0}\right\rangle}=\frac{\Gamma(q+1) / \Gamma\left(q+\frac{3}{2}\right)}{\Gamma(q) / \Gamma\left(q+\frac{1}{2}\right)}=\frac{q}{q+\frac{1}{2}} \quad \text { Since: } \Gamma(x+1)=x \Gamma(x)=x \text { ! }
$$

Compare your estimates to the exact eigenenergy given above. What can you conclude? Plot both normalized wavefunctions as in \#1.
3. Since the potential looks quadratic for $x \sim 0$, we should be able to approximate using SHO. Thus since:

$$
\cosh ^{-2}(y)=1-y^{2}+\frac{2}{3} y^{4}-\frac{17}{45} y^{6}+\cdots
$$

we have:

$$
\begin{aligned}
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi-\frac{V_{0}}{\cosh ^{2}(x / a)} \psi & =E \psi \\
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{\prime 2}} \psi+\frac{V_{0}}{a^{2}} x^{2} \psi-\frac{V_{0} 2}{3 a^{4}} x^{4} \psi & \approx\left(E+V_{0}\right) \psi \\
-A \frac{\partial^{2}}{\partial x^{2}} \psi+B x^{2} \psi-B \frac{2}{3 a^{2}} x^{4} \psi & \approx\left(E+V_{0}\right) \psi
\end{aligned}
$$

Using the length scale: $l=(A / B)^{\frac{1}{4}}$ and energy scale: $e=(A B)^{\frac{1}{2}}$, we have:

$$
\begin{aligned}
\frac{-A}{(A / B)^{\frac{1}{2}}} \frac{\partial^{2}}{\partial x^{\prime 2}} \psi+B(A / B)^{\frac{1}{2}} x^{\prime 2} \psi-B(A / B)^{\frac{1}{2}} \frac{2 l^{2}}{3 a^{2}} x^{\prime 4} \psi & \approx\left(E+V_{0}\right) \psi \\
-\frac{\partial^{2}}{\partial x^{\prime 2}} \psi+x^{\prime 2} \psi-\frac{2 l^{2}}{3 a^{2}} x^{\prime 4} \psi & \approx\left(E^{\prime}+V_{0}^{\prime}\right) \psi \\
H_{0} \psi-\frac{2 l^{2}}{3 a^{2}} x^{\prime 4} \psi & \approx\left(E^{\prime}+V_{0}^{\prime}\right) \psi
\end{aligned}
$$

where H_{0} is the SHO Hamiltonian with eigenenergies $E_{n}^{\prime(0)}=(2 n+1)$. Thus $E^{\prime}+V_{0}^{\prime}=\left(E+V_{0}\right) / e=2 n+1$ or

$$
E=-V_{0}+\left(\frac{\hbar^{2}}{2 m a^{2}} V_{0}\right)^{\frac{1}{2}}(2 n+1)
$$

Dividing through by $\hbar^{2} / 2 m a^{2}$ to produce the dimensionless quantities introduced for the $1 / \cosh ^{2}$ potential, we have:

$$
E^{\prime}=-V_{0}^{\prime}+\left(V_{0}^{\prime}\right)^{\frac{1}{2}}(2 n+1)
$$

Whereas the exact answer is:

$$
E^{\prime}=-\left[\sqrt{V_{0}^{\prime}+\frac{1}{4}}-\left(n+\frac{1}{2}\right)\right]^{2}=-\left(V_{0}^{\prime}+\frac{1}{4}\right)+\left(V_{0}^{\prime}+\frac{1}{4}\right)^{\frac{1}{2}}(2 n+1)-\left(n+\frac{1}{2}\right)^{2}
$$

Use first order perturbation theory to find how the x^{4} term affects the eigenenergies. Use second order perturbation theory to find the effect on the ground state. Hint: remember your raising and lower operators!
4. If we make the $1 / \cosh ^{2}$ potential very deep and very narrow then it should approximate a delta function potential. Since:

$$
\begin{aligned}
\int_{0}^{\infty} V(x) d x & =-\int_{0}^{\infty} V_{0} / \cosh ^{2}(x / a) d x=-V_{0} a \int_{0}^{\infty} 1 / \cosh ^{2}(y) d y \\
& =-V_{0} a \int_{0}^{\infty} \tanh ^{\prime}(y) d y=-V_{0} a
\end{aligned}
$$

we can keep the delta function potential strength $w=2 V_{0} a$ a constant as $V_{0} \rightarrow \infty$ and $a \rightarrow 0$. See if the limit of the $1 / \cosh ^{2}$ potential ground-state eigenenergy agrees with the delta function potential results derived on the web. What happens to the other bound states?
5. Find the WKB approximation for these eigenenergies. Hint: change variables in the WKB integral to $u=\sinh (x)$, note closely the range of integration in u and use the fact:

$$
\int_{0}^{A} \frac{\sqrt{A^{2}-u^{2}}}{1+u^{2}} d u=\frac{\pi}{2}\left(\sqrt{1+A^{2}}-1\right)
$$

P.S. For folks knowing contour integration: Prove the above integral for extra credit.

