Recall the two-particle CM coordinate transformation:

$$
\begin{array}{ll}
\overrightarrow{\mathbf{R}}=\frac{m_{1}}{M} \overrightarrow{\mathbf{r}}_{1}+\frac{m_{2}}{M} \overrightarrow{\mathbf{r}}_{2} & \overrightarrow{\mathbf{r}}_{1}=\overrightarrow{\mathbf{R}}+\frac{m_{2}}{M} \overrightarrow{\mathbf{r}} \\
\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2} & \overrightarrow{\mathbf{r}}_{2}=\overrightarrow{\mathbf{R}}-\frac{m_{1}}{M} \overrightarrow{\mathbf{r}} \tag{1}
\end{array}
$$

Consider a two particle state where each particle has definite momentum: $\overrightarrow{\mathbf{p}}_{i}=\hbar \overrightarrow{\mathbf{k}}_{i}$ for $i=1,2$:

$$
\begin{equation*}
\psi=e^{i\left(\overrightarrow{\mathbf{k}}_{1} \cdot \overrightarrow{\mathbf{r}}_{1}+\overrightarrow{\mathbf{k}}_{2} \cdot \overrightarrow{\mathbf{r}}_{2}\right)} \tag{2}
\end{equation*}
$$

Rewrite this wavefunction using the CM coordinates $\overrightarrow{\mathbf{R}}, \overrightarrow{\mathbf{r}}$. Show that the result can be interpreted as total momentum $\overrightarrow{\mathbf{P}}=\overrightarrow{\mathbf{p}}_{1}+\overrightarrow{\mathbf{p}}_{2}$, and relative momentum $\overrightarrow{\mathbf{p}}=\mu\left(\overrightarrow{\mathbf{v}}_{1}-\overrightarrow{\mathbf{v}}_{2}\right)$. For the case of identical particles ($m_{1}=m_{2}=m=M / 2$), write down a sum of wavefunctions like (2) that is symmetric under particle exchange, convert the result to the CM coordinates, and simplify to produce a result like:

$$
\psi=e^{i \overrightarrow{\mathbf{R}} \cdot \overrightarrow{\mathbf{R}}} \cos (\overrightarrow{\mathbf{k}} \cdot \overrightarrow{\mathbf{r}})
$$

Show that antisymmetric under exchange results in something like:

$$
\psi=e^{i \overrightarrow{\mathbf{K}} \cdot \overrightarrow{\mathbf{R}}} \sin (\overrightarrow{\mathbf{k}} \cdot \overrightarrow{\mathbf{r}})
$$

Consider two identical particles ($m_{1}=m_{2}=m=M / 2$) that together experience a one dimensional simple harmonic potential:

$$
V=\frac{1}{2} m \omega^{2}\left(x_{1}^{2}+x_{2}^{2}\right)
$$

The Hamiltonian can be expressed as the sum of two identical SHOs:

$$
H=\left\{\frac{1}{2 m} p_{1}^{2}+\frac{1}{2} m \omega^{2} x_{1}^{2}\right\}+\left\{\frac{1}{2 m} p_{2}^{2}+\frac{1}{2} m \omega^{2} x_{2}^{2}\right\}
$$

The product wavefunction:

$$
\psi=\left|n_{1}\right\rangle\left|n_{2}\right\rangle
$$

can then be seen to be an eigenfunction with eigenenergy that is the sum of the individual SHO engenenergies:

$$
E=\hbar \omega\left(n_{1}+\frac{1}{2}\right)+\hbar \omega\left(n_{2}+\frac{1}{2}\right)
$$

Rewrite this Hamiltonian in terms of the CM coordinates (X, x) and show that the result is still the sum of SHOs, with eigenenergies:

$$
E=\hbar \omega\left(N+\frac{1}{2}\right)+\hbar \omega\left(n+\frac{1}{2}\right)
$$

Note that particle exchange $x_{1} \leftrightarrow x_{2}$ becomes: $x \leftrightarrow-x$ and $X \leftrightarrow X$ If the particles are fermions (i.e., if this wavefunction must be antisymmetric [a.k.a. odd] under particle exchange), what values of N, n are allowed? List the N, n for the four lowest energy antisymmetric states. If the particles are bosons (i.e., if the wavefunction must be symmetric [a.k.a. even] under particle exchange), what values of N, n are allowed? List the N, n for the four lowest energy symmetric states.

