Homework 4: Consider an infinite cylindrical shell of radius $R=1$, coaxial with the z axis. The voltage on the surface of the shell is given by:

$$
V(\theta)=\left\{\begin{array}{cl}
+1 & \text { for }|\theta|<\pi / 4 \tag{1}\\
-1 & \text { for }|\theta-\pi|<\pi / 4 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Using 'Fourier's Trick', find the series solution to Laplace's equation inside this cylinder. (Hint: Is this $V(\theta)$ even or odd?)

A nice feature of this problem is that Laplace's equation can be solved exactly:

$$
\begin{equation*}
\phi(x, y)=\frac{1}{\pi}\left[\arctan \left(\frac{\sqrt{2}(x+y)}{1-r^{2}}\right)+\arctan \left(\frac{\sqrt{2}(x-y)}{1-r^{2}}\right)\right] \tag{2}
\end{equation*}
$$

```
D [D [phi [x,y] , x] , x] +D [D [phi [x,y] y] ,y]
Simplify[%]
Out [6]= 0
```

which allows you to compare truncated versions of your infinite series to the exact result. Lets pick the point $\mathbf{p}=(x, y)=(.5,0)$ as a typical point and compare results. Calculate $\phi(\mathbf{p})$ when your sum is truncated to one, two, three, \ldots, six non-zero terms. Display these results along with the exact result. An easy way to do this is to include the sum-limit in the function definition:

```
phi[x_, y_]=(ArcTan[Sqrt[2] (x+y)/(1-(x^2+y^2))]+\operatorname{ArcTan[Sqrt [2] (x-y)/(1-(x^2+y^2))])/Pi}
phi2[r_, t_,m_]=Sum[A[[n]]/Pi r^n Cos[n t],{n,1,2 m+1}]
Table[phi2[.5,0,m],{m,0,5}]
Table[phi2[.5,0,m]-phi[.5,0],{m,0,5}]
```


Figure 1: A contour plot of the exact solution (left). A display showing the voltages on the surface of the cylinder (right).

